A341969
Irregular triangle read by rows in which row n lists the sequence of widths, each contiguous sequence of identical widths w in A249223 replaced by a single entry of w, in the symmetric representation of sigma(n).
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1
Offset: 1
The irregular triangle for A279387 and this sequence:
row A279387 A341969
1 1 1
2 1 1
3 2 1 0 1
4 1 1
5 2 1 0 1
6 1 1 1 2 1
7 2 1 0 1
8 1 1
9 3 1 0 1 0 1
10 2 1 0 1
11 2 1 0 1
12 1 1 1 2 1
13 2 1 0 1
14 2 1 0 1
15 3 1 1 0 1 2 1 0 1
16 1 1
17 2 1 0 1
18 1 2 1 2 1 2 1
19 2 1 0 1
20 1 1 1 2 1
21 4 1 0 1 0 1 0 1
.. .. ..
30 1 3 1 2 1 2 1 2 1
.. .. ..
45 3 3 1 0 1 2 1 2 1 2 1 0 1
.. .. ..
a(17)..a(21) = { 1, 0, 1, 0, 1 } is row 9; the symmetric representation of sigma(9) consists of 3 parts of width 1 - see A247687.
a(37)..a(43) = { 1, 0, 1, 2, 1, 0, 1} is row 15; the symmetric representation of sigma(15) consists of 2 outer parts of width 1 and a central part of width 2 only at the diagonal - see A338488.
a(59)..a(65) = { 1, 0, 1, 0, 1, 0, 1 } is row 21; the symmetric representation of sigma(21) consists of 4 parts of width 1, and 21 is the smallest such number - see A264102.
a(234)..a(240) = { 1, 2, 3, 2, 3, 2, 1 } is row 60; the symmetric representation of sigma(60) consists of 1 part of maximum width 3 which occurs in two subparts, and 60 is the smallest number with width 3 - see A250070.
Cf.
A235791,
A237048,
A237270,
A237591,
A237593,
A247687,
A249223,
A249351,
A250070,
A264102,
A279387,
A280851,
A338488,
A341970,
A341971.
-
(* function widthL[ ] is defined in A341971 *)
a341969[n_] := Module[{wL=widthL[n]}, Join[wL, Rest[Reverse[wL]]]]
Flatten[Table[a341969[n], {n, 28}]] (* the first 28 rows of the table *)
A239663
a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts.
Original entry on oeis.org
1, 3, 9, 21, 63, 147, 357, 903, 2499, 6069, 13915, 29095, 59455, 142945, 320045, 643885, 1367465, 3287735, 6779135, 13853015, 30262595, 61773745
Offset: 1
------------------------------------------------------
n a(n) A239665 A266094(n)
------------------------------------------------------
1 1 [1] 1
2 3 [2, 2] 4
3 9 [5, 3, 5] 13
4 21 [11, 5, 5, 11] 32
5 63 [32, 12, 16, 12, 32] 104
...
For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below:
.
. _ _ _ _ _ 5
. |_ _ _ _ _|
. |_ _ 3
. |_ |
. |_|_ _ 5
. | |
. | |
. | |
. | |
. |_|
.
Cf.
A000203,
A196020,
A236104,
A235791,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A239657,
A239660,
A239665,
A239931-
A239934,
A245092,
A262626,
A266094.
-
(* a239663[] permits computation in intervals *)
(* Function a237270[] is defined in A237270 *)
(* variable "list" contains the first occurrences up to m *)
a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts]
a239663[{1}, {1, 1000}] (* computes the first 8 values *)
(* Hartmut F. W. Hoft, Jul 08 2014 *)
(* support functions are defined in A341969, A341970 & A341971 *)
a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
a239663[62000000,22] (* Hartmut F. W. Hoft, Sep 22 2021 *)
A240062
Square array read by antidiagonals in which T(n,k) is the n-th number j with the property that the symmetric representation of sigma(j) has k parts, with j >= 1, n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 6, 7, 15, 21, 8, 10, 25, 27, 63, 12, 11, 35, 33, 81, 147, 16, 13, 45, 39, 99, 171, 357, 18, 14, 49, 51, 117, 189, 399, 903, 20, 17, 50, 55, 153, 207, 441, 987, 2499, 24, 19, 70, 57, 165, 243, 483, 1029, 2709, 6069, 28, 22, 77, 65, 195, 261, 513, 1113
Offset: 1
Array begins:
1, 3, 9, 21, 63, 147, 357, 903, 2499, 6069, ...
2, 5, 15, 27, 81, 171, 399, 987, 2709, 6321, ...
4, 7, 25, 33, 99, 189, 441, 1029, 2793, 6325, ...
6, 10, 35, 39, 117, 207, 483, 1113, 2961, 6783, ...
8, 11, 45, 51, 153, 243, 513, 1197, 3025, 6875, ...
12, 13, 49, 55, 165, 261, 567, 1239, 3087, 6909, ...
16, 14, 50, 57, 195, 275, 609, 1265, 3249, 7011, ...
18, 17, 70, 65, 231, 279, 621, 1281, 3339, 7203, ...
20, 19, 77, 69, 255, 297, 651, 1375, 3381, 7353, ...
24, 22, 91, 75, 273, 333, 729, 1407, 3591, 7581, ...
...
[Lower right hand triangle of array completed by _Hartmut F. W. Hoft_, Oct 04 2022]
Cf.
A000203,
A006254,
A065091,
A067742,
A071561,
A071562,
A196020,
A236104,
A235791,
A237048,
A237270,
A239660,
A239929,
A239931-
A239934,
A245092,
A262626,
A319529,
A319796,
A319801,
A319802.
-
(* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
widthTable[n_, {r_, c_}] := Module[{k, list=Table[{}, c], parts}, For[k=1, k<=n, k++, parts=partsSRS[k]; If[parts<=c&&Length[list[[parts]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
a240062T[n_, r_] := TableForm[widthTable[n, {r, r}]]
a240062[6069, 10] (* data *)
a240062T[7581, 10] (* 10 X 10 array - Hartmut F. W. Hoft, Oct 04 2022 *)
A320066
Numbers k with the property that the symmetric representation of sigma(k) has five parts.
Original entry on oeis.org
63, 81, 99, 117, 153, 165, 195, 231, 255, 273, 285, 325, 345, 375, 425, 435, 459, 475, 525, 561, 575, 625, 627, 665, 693, 725, 735, 775, 805, 819, 825, 875, 897, 925, 975, 1015, 1025, 1075, 1085, 1150, 1175, 1225, 1250, 1295, 1377, 1395, 1421, 1435, 1450, 1479, 1505, 1519, 1550, 1581, 1617, 1645, 1653, 1665
Offset: 1
63 is in the sequence because the 63rd row of A237593 is [32, 11, 6, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 6, 11, 32], and the 62nd row of the same triangle is [32, 11, 5, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 4, 5, 11, 32], therefore between both symmetric Dyck paths there are five parts: [32, 12, 16, 12, 32].
The sums of these parts is 32 + 12 + 16 + 12 + 32 = 104, equaling the sum of the divisors of 63: 1 + 3 + 7 + 9 + 21 + 63 = 104.
(The diagram of the symmetric representation of sigma(63) = 104 is too large to include.)
-
(* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
a320066[n_] := Select[Range[n], partsSRS[#]==5&]
a320066[1665] (* Hartmut F. W. Hoft, Oct 04 2022 *)
A357581
Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 8, 7, 25, 21, 16, 10, 49, 27, 81, 32, 11, 50, 33, 625, 147, 64, 13, 98, 39, 1250, 171, 729, 128, 14, 121, 51, 2401, 207, 15625, 903, 256, 17, 169, 55, 4802, 243, 31250, 987, 3025, 512, 19, 242, 57, 14641, 261, 117649, 1029, 3249, 6875
Offset: 1
The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
1 2 3 4 5 6 7 8 9 10 11 ...
----------------------------------------------------------------------
1 3 9 21 81 147 729 903 3025 6875 59049
2 5 25 27 625 171 15625 987 3249 7203 9765625
4 7 49 33 1250 207 31250 1029 4761 13203 19531250
8 10 50 39 2401 243 117649 1113 6561 13527 ...
16 11 98 51 4802 261 235298 1239 7569 14013 ...
32 13 121 55 14641 275 1771561 1265 8649 14499 ...
64 14 169 57 28561 279 3543122 1281 12321 14661 ...
128 17 242 65 29282 333 4826809 1375 14161 15471 ...
256 19 289 69 57122 363 7086244 1407 15129 15633 ...
512 22 338 85 58564 369 9653618 1491 16641 15957 ...
1024 23 361 87 83521 387 19307236 1533 17689 16119 ...
...
Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
Odd numbers in column 3: A001248(k), k > 1.
Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
Odd numbers in column 5: A030514(k), k > 1.
Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
Smallest even number in column 6 is 5050.
Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
Odd numbers in column 7: A030516(k), k > 1.
Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
Cf.
A000079,
A001248,
A030514,
A030516,
A174905,
A174973,
A237593,
A238443,
A239929,
A241008,
A241010,
A246955,
A247687,
A264102,
A279102,
A280107,
A318843,
A320066,
A320511,
A341969,
A341970,
A341971.
-
(* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
a357581T[120000, 10] (* upper left hand 10x10 array *)
a357581T[20000000, 11] (* 11x11 array - very long computation time *)
A320511
Numbers k with the property that the symmetric representation of sigma(k) has six parts.
Original entry on oeis.org
147, 171, 189, 207, 243, 261, 275, 279, 297, 333, 351, 363, 369, 387, 423, 429, 465, 477, 507, 531, 549, 555, 595, 603, 605, 615, 639, 645, 657, 663, 705, 711, 715, 741, 747, 795, 801, 833, 845, 867, 873, 885, 909, 915, 927, 931, 935, 963, 969, 981, 1005, 1017, 1045, 1065, 1071, 1083, 1095, 1105, 1127
Offset: 1
147 is in the sequence because the 147th row of A237593 is [74, 25, 13, 8, 5, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 4, 5, 8, 13, 25, 74], and the 146th row of the same triangle is [74, 25, 12, 8, 6, 4, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 4, 6, 8, 12, 25, 74], therefore between both symmetric Dyck paths there are six parts: [74, 26, 14, 14, 26, 74].
Note that the sum of these parts is 74 + 26 + 14 + 14 + 26 + 74 = 228, equaling the sum of the divisors of 147: 1 + 3 + 7 + 21 + 49 + 147 = 228.
(The diagram of the symmetric representation of sigma(147) = 228 is too large to include.)
Cf.
A000203,
A018303,
A196020,
A235791,
A236104,
A237048,
A237591,
A237593,
A239663,
A239665,
A245092,
A262626,
A296508.
-
(* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
a320511[n_] := Select[Range[n], partsSRS[#]==6&]
a320511[1127] (* Hartmut F. W. Hoft, Oct 04 2022 *)
A347980
a(n) is the smallest odd number k whose symmetric representation of sigma(k) has maximum width n.
Original entry on oeis.org
1, 15, 315, 2145, 3465, 17325, 45045, 51975, 225225, 405405, 315315, 765765, 1576575, 2297295
Offset: 1
The pattern of maximum widths of the parts in the symmetric representation of sigma for the first four terms in the sequence is:
a(n) parts successive widths
1: 1 1
15: 3 1 2 1
315: 3 1 3 1
2145: 7 1 2 3 4 3 2 1
Cf.
A174973,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A249351 (widths),
A250070,
A262045,
A341969,
A341970,
A341971,
A347979.
-
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
a347980[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=1, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
a347980[2500000,14] (* long evaluation time *)
A347979
a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n.
Original entry on oeis.org
2, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440
Offset: 1
The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is:
a(n) parts successive widths
2: 1 1
6: 1 1 2 1
60: 1 1 2 3 2 3 2 1
120: 1 1 2 3 4 3 2 1
Cf.
A174973,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A249351 (widths),
A250070,
A262045,
A341969,
A341970,
A341971,
A347980.
-
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *)
A348171
Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in at least one of its p parts.
Original entry on oeis.org
1, 6, 3, 60, 78, 9, 120, 7620, 15, 21, 360, 28920, 315, 75, 81, 840, 261720, 1326, 495, 63, 147, 3360, 1422120, 3465, 22542, 525, 189, 729, 2520, 22622880, 17325, 44574, 5005, 1275, 357, 903, 5040, 12728520, 45045, 199578, 6435, 16575, 1287, 1197, 3025, 10080, 50858640, 51975, 7734558, 34034, 131835, 2145, 3861, 2499, 6875
Offset: 1
The 10x10 section of the table with dashes indicating values greater than 6*10^7; rows w denote the maximum width and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1 2 3 4 5 6 7 8 9 ...
----------------------------------------------------------------------------
1 | 1 3 9 21 81 147 729 903 3025
2 | 6 78 15 75 63 189 357 1197 2499
3 | 60 7620 315 495 525 1275 1287 3861 3591
4 | 120 28920 1326 22542 5005 16575 2145 29325 11583
5 | 360 261720 3465 44574 6435 131835 76125 24225 82593
6 | 840 1422120 17325 199578 34034 83655 196707 468027 62985
7 | 3360 22622880 45045 7734558 153153 442442 314925 1108965 471975
8 | 2520 12728520 51975 - 205275 2067065 1429275 2359875 557175
9 | 5040 50858640 225225 - 646646 2863718 2395197 5353725 2785875
10| 10080 - 405405 - 1990989 2124694 6500375 36535499 7753875
...
The symmetric representation of sigma for T(2,3) = 15 consists of the three parts (8, 8, 8) of maximum widths (1, 2, 1), and that of T(3,3) = 315 consists of the three parts (158, 308, 158) of maximum widths (1, 3, 1).
Cf.
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A239663,
A249223,
A250070,
A262045,
A318843,
A341969,
A341970,
A341971,
A347979,
A347980,
A348142.
-
(* function a341969 is defined in A341969 *)
a348171[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], # != 0 &], #[[1]] != 0 &]]; c = Length[s]; u = Max[s]; If[u<=w && c<=p, If[list[[u, c]] == 0, list[[u, c]] = k ]]]; list]
table=a348171[60000000, {15, 15}] (* 15x15 table; very long computation time *)
p[n_] := n-row[n-1](row[n-1]+1)/2
w[n_] := row[n-1]-p[n]+2
Map[table[[w[#], p[#]]]&, Range[55]] (* sequence data *)
A379630
Irregular triangle read by rows in which row n lists the smallest parts of the partitions of n into consecutive parts followed by the conjugate corresponding odd divisors of n in accordance with the theorem of correspondence described in the Comments lines.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 2, 5, 1, 6, 1, 3, 1, 7, 3, 7, 1, 8, 1, 9, 4, 2, 3, 9, 1, 10, 1, 5, 1, 11, 5, 11, 1, 12, 3, 3, 1, 13, 6, 13, 1, 14, 2, 7, 1, 15, 7, 4, 1, 5, 3, 15, 1, 16, 1, 17, 8, 17, 1, 18, 5, 3, 9, 3, 1, 19, 9, 19, 1, 20, 2, 5, 1, 21, 10, 6, 1, 7, 3, 21, 1, 22, 4, 11, 1, 23, 11, 23, 1, 24, 7, 3, 1
Offset: 1
Triangle begins:
1, 1;
2, 1;
3, 1, 3, 1;
4, 1;
5, 2, 5, 1;
6, 1, 3, 1;
7, 3, 7, 1;
8, 1;
9, 4, 2, 3, 9, 1;
10, 1, 5, 1;
11, 5, 11, 1;
12, 3, 3, 1;
13, 6, 13, 1;
14, 2, 7, 1;
15, 7, 4, 1, 5, 3, 15, 1;
16, 1;
17, 8, 17, 1;
18, 5, 3, 9, 3, 1;
19, 9, 19, 1;
20, 2, 5, 1;
21, 10, 6, 1, 7, 3, 21, 1;
...
For n = 21 the partitions of 21 into consecutive parts are [21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1].
On the other hand the odd divisors of 21 are [1, 3, 7, 21].
To determine how these partitions are related to the odd divisors we follow the two rules of the theorem as shown below:
The first partition is [21] and the number of parts is 1 and 1 is odd so the corresponding odd divisor of 21 is 1.
The second partition is [11, 10] and the number of parts is 2 and 2 even so the corresponding odd divisor of 21 is equal to 11 + 10 = 21.
The third partition is [8, 7, 6] and the number of parts is 3 and 3 is odd so the corresponding odd divisor of 21 is 3.
The fourth partition is [6, 5, 4, 3, 2, 1] and the number of parts is 6 and 6 is even so the corresponding odd divisor of 21 is equal to 6 + 1 = 5 + 2 = 4 + 3 = 7.
Summarizing in a table:
--------------------------------------
Correspondence
--------------------------------------
Partitions of 21 Odd
into consecutive divisors
parts of 21
------------------- ----------
[21] .................... 1
[11, 10] ................ 21
[8, 7, 6] ................ 3
[6, 5, 4, 3, 2, 1] ....... 7
.
Then we can make a table of conjugate correspondence in which the four partitions are arrenged in four columns with the smallest parts at the top as shown below:
------------------------------------------
Conjugate correspondence
------------------------------------------
Partitions of 21 Odd
into consecutive divisors
parts as columns of 21
------------------- ------------------
21 10 6 1 7 3 21 1
| 11 7 2 | | | |
| | 8 3 | | | |
| | | 4 | | | |
| | | 5 | | | |
| | | 6 | | | |
| | | |_______| | | |
| | |_________________| | |
| |___________________________| |
|_____________________________________|
.
Then removing all rows except the first row we have a table of conjugate correspondence for smallest parts and odd divisors as shown below:
------------------- ------------------
Smallest parts Odd divisors
------------------- ------------------
21 10 6 1 7 3 21 1
| | | |_______| | | |
| | |_________________| | |
| |___________________________| |
|_____________________________________|
.
So the 21st row of the triangle is [21, 10, 6, 1, 7, 3, 21, 1].
.
Illustration of initial terms in an isosceles triangle demonstrating the theorem:
. _ _
_|1|1|_
_|2 _|_ 1|_
_|3 |1|3| 1|_
_|4 _| | |_ 1|_
_|5 |2 _|_ 5| 1|_
_|6 _| |1|3| |_ 1|_
_|7 |3 | | | 7| 1|_
_|8 _| _| | |_ |_ 1|_
_|9 |4 |2 _|_ 3| 9| 1|_
_|10 _| | |1|5| | |_ 1|_
_|11 |5 _| | | | |_ 11| 1|_
_|12 _| |3 | | | 3| |_ 1|_
_|13 |6 | _| | |_ | 13| 1|_
_|14 _| _| |2 _|_ 7| |_ |_ 1|_
_|15 |7 |4 | |1|5| | 3| 15| 1|_
_|16 _| | | | | | | | |_ 1|_
_|17 |8 _| _| | | | |_ |_ 17| 1|_
_|18 _| |5 |3 | | | 9| 3| |_ 1|_
_|19 |9 | | _| | |_ | | 19| 1|_
_|20 _| _| | |2 _|_ 5| | |_ |_ 1|_
|21 |10 |6 | | |1|7| | | 3| 21| 1|
.
The geometrical structure of the above isosceles triangle is defined in A237593. See also the triangle A286001.
Note that the diagram also can be interpreted as a template which after folding gives a 90 degree pop-up card which has essentially the same structure as the stepped pyramid described in A245092.
.
Cf.
A196020,
A204217,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A245092,
A262626,
A341971.
Showing 1-10 of 16 results.
Comments