cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 350 results. Next

A212194 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the staggered hexagonal square grid graph SH_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -5, 8, -4, 0, 1, -16, 112, -448, 1120, -1791, 1786, -1012, 248, 0, 1, -33, 510, -4898, 32703, -160859, 602408, -1749715, 3975561, -7068408, 9755858, -10265148, 7968348, -4304712, 1445104, -226720, 0, 1, -56, 1508, -25992, 321994, -3051871, 23000726, -141421592, 722137763, -3101089710
Offset: 1

Views

Author

Alois P. Heinz, May 03 2012

Keywords

Comments

T differs from A212162 first at (n,k) = (5,10): T(5,10) = -3101089710, A212162(5,10) = -3101089711.
The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                        o--o--o
.                                        | /|\ |
.                                        |/ | \|
.                            o--o        o--o--o
.                            | /|        | /|\ |
.                            |/ |        |/ | \|
.               o            o--o        o--o--o
Graph:       SH_(1,1)      SH_(2,2)      SH_(3,3)
Vertices:       1             4             9
Edges:          0             5            16
The staggered hexagonal square grid graph SH_(2,2) has chromatic polynomial q^4 -5*q^3 +8*q^2 -4*q => row 2 = [1, -5, 8, -4, 0].
Triangle T(n,k) begins:
1,    0;
1,   -5,     8,      -4,        0;
1,  -16,   112,    -448,     1120,      -1791, ...
1,  -33,   510,   -4898,    32703,    -160859, ...
1,  -56,  1508,  -25992,   321994,   -3051871, ... , -3101089710, ...
1,  -85,  3520,  -94620,  1855860,  -28306676, ...
1, -120,  7068, -272344,  7720110, -171656543, ...
1, -161, 12782, -667058, 25738055, -783003395, ...
		

Crossrefs

Columns 1-2 give: A000012, (-1)*A045944(n-1).
Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522.

A238010 Number A(n,k) of partitions of k^n into parts that are at most n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 5, 10, 1, 1, 0, 1, 9, 75, 64, 1, 1, 0, 1, 13, 374, 4410, 831, 1, 1, 0, 1, 19, 1365, 123464, 1366617, 26207, 1, 1, 0, 1, 25, 3997, 1736385, 393073019, 2559274110, 2239706, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2014

Keywords

Comments

In general, column k>=2 is asymptotic to k^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

Examples

			A(3,2) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111.
A(2,3) = 5: 22221, 222111, 2211111, 21111111, 111111111.
A(2,4) = 9: 22222222, 222222211, 2222221111, 22222111111, 222211111111, 2221111111111, 22111111111111, 211111111111111, 1111111111111111.
Square array A(n,k) begins:
  0, 0,   0,       0,         0,           0, ...
  1, 1,   1,       1,         1,           1, ...
  1, 1,   3,       5,         9,          13, ...
  1, 1,  10,      75,       374,        1365, ...
  1, 1,  64,    4410,    123464,     1736385, ...
  1, 1, 831, 1366617, 393073019, 33432635477, ...
		

Crossrefs

Rows n=0-2 give: A000004, A000012, A080827.
Main diagonal gives A238000.

Programs

  • Mathematica
    A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n}]; A[0, 0] = 0; Table[A[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 17 2017 *)

Formula

A(n,k) = [x^(k^n)] Product_{j=1..n} 1/(1-x^j).

A274650 Triangle read by rows: T(n,k), (0 <= k <= n), in which each term is the least nonnegative integer such that no row, column, diagonal, or antidiagonal contains a repeated term.

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 2, 4, 3, 5, 5, 1, 0, 2, 3, 4, 3, 5, 1, 6, 7, 6, 7, 2, 0, 5, 4, 8, 8, 5, 9, 4, 7, 2, 10, 6, 7, 10, 8, 3, 0, 6, 9, 5, 4, 11, 6, 12, 7, 1, 8, 3, 10, 9, 13, 9, 8, 4, 11, 2, 0, 1, 12, 6, 7, 10, 10, 11, 7, 12, 4, 3, 2, 9, 8, 14, 13, 15, 12, 9, 10, 6, 8, 1, 0, 11, 7, 4, 16, 14, 17
Offset: 0

Views

Author

Omar E. Pol, Jul 02 2016

Keywords

Comments

Similar to A274528, but the triangle here is a right triangle.
The same rule applied to an equilateral triangle gives A274528.
By analogy, the offset for both rows and columns is the same as the offset of A274528.
We construct the triangle by reading from left to right in each row, starting with T(0,0) = 0.
Presumably every diagonal and every column is also a permutation of the nonnegative integers, but the proof does not seem so straightforward. Of course neither the rows nor the antidiagonals are permutations of the nonnegative integers, since they are finite in length.
Omar E. Pol's conjecture that every column and every diagonal of the triangle is a permutation of the nonnegative integers is true: see the link. - N. J. A. Sloane, Jun 07 2017
It appears that the numbers generally appear for the first time in or near the right border of the triangle.
Theorem 1: the middle diagonal gives A000004 (the zero sequence).
Proof: T(0,0) = 0 by definition. For the next rows we have that in row 1 there are no zeros because the first term belongs to a column that contains a zero and the second term belongs to a diagonal that contains a zero. In row 2 the unique zero is T(2,1) = 0 because the preceding term belongs to a column that contains a zero and the following term belongs to a diagonal that contains a zero. Then we have two recurrences for all rows of the triangle:
a) If T(n,k) = 0 then row n+1 does not contain a zero because every term belongs to a column that contains a zero or it belongs to a diagonal that contains a zero.
b) If T(n,k) = 0 the next zero is T(n+2,k+1) because every preceding term in row n+2 is a positive integer because it belongs to a column that contains a zero and, on the other hand, the column, the diagonal and the antidiagonal of T(n+2,k+1) do not contain zeros.
Finally, since both T(n,k) = 0 and T(n+2,k+1) = 0 are located in the middle diagonal, the other terms of the middle diagonal are zeros, or in other words: the middle diagonal gives A000004 (the zero sequence). QED
Theorem 2: all zeros are in the middle diagonal.
Proof: consider the first n rows of the triangle. Every element located above or at the right-hand side of the middle diagonal must be positive because it belongs to a diagonal that contains one of the zeros of the middle diagonal. On the other hand every element located below the middle diagonal must be positive because it belongs to a column that contains one of the zeros of the middle diagonal, hence there are no zeros outside of the middle diagonal, or in other words: all zeros are in the middle diagonal. QED
From Hartmut F. W. Hoft, Jun 12 2017: (Start)
T(2k,k) = 0, for all k >= 0, and T(n,{(n-1)/2,(n+2)/2,(n-2)/2,(n+1)/2}) = 1, for all n >= 0 with n mod 8 = {1,2,4,5} respectively, and no 0's or 1's occur in other positions. The triangle of positions of 0's and 1's for this sequence is the triangle in the Comment section of A274651 with row and column indices and values shifted down by one.
The sequence of rows containing 1's is A047613 (n mod 8 = {1,2,4,5}), those containing only 1's is A016813 (n mod 8 = {1,5}), those containing both 0's and 1's is A047463 (n mod 8 = {2,4}), those containing only 0's is A047451 (n mod 8 = {0,6}), and those containing neither 0's nor 2's is A004767 (n mod 8 = {3,7}).
(End)

Examples

			Triangle begins:
   0;
   1,  2;
   3,  0,  1;
   2,  4,  3,  5;
   5,  1,  0,  2,  3;
   4,  3,  5,  1,  6,  7;
   6,  7,  2,  0,  5,  4,  8;
   8,  5,  9,  4,  7,  2, 10,  6;
   7, 10,  8,  3,  0,  6,  9,  5,  4;
  11,  6, 12,  7,  1,  8,  3, 10,  9, 13;
   9,  8,  4, 11,  2,  0,  1, 12,  6,  7, 10;
  10, 11,  7, 12,  4,  3,  2,  9,  8, 14, 13, 15;
  12,  9, 10,  6,  8,  1,  0, 11,  7,  4, 16, 14, 17;
  ...
From _Omar E. Pol_, Jun 07 2017: (Start)
The triangle may be reformatted as an isosceles triangle so that the zero sequence (A000004) appears in the central column (but note that this is NOT the way the triangle is constructed!):
.
.                    0;
.                  1,  2;
.                3,  0,  1;
.              2,  4,  3,  5;
.            5,  1,  0,  2,  3;
.          4,  3,  5,  1,  6,  7;
.        6,  7,  2,  0,  5,  4,  8;
.     8,   5,  9,  4,  7,  2, 10,  6;
.   7,  10,  8,  3,  0,  6,  9,  5,  4;
...
(End)
		

Crossrefs

Cf. A000004 (middle diagonal).
Cf. A046092 (indices of the zeros).
Every diagonal and every column of the right triangle is a permutation of A001477.
The left and right edges of the right triangle give A286294 and A286295.
Cf. A274651 is the same triangle but with 1 added to every entry.
Other sequences of the same family are A269526, A274528, A274820, A274821, A286297, A288530, A288531.
Sequences mentioned in N. J. A. Sloane's proof are A000170, A274616 and A287864.
Cf. A288384.
See A308179, A308180 for a very similar triangle.

Programs

  • Mathematica
    (* function a274651[] is defined in A274651 *)
    (* computation of rows 0 ... n-1 *)
    a274650[n_] := a274651[n]-1
    Flatten[a274650[13]] (* data *)
    TableForm[a274650[13]] (* triangle *)
    (* Hartmut F. W. Hoft, Jun 12 2017 *)
  • PARI
    See Links section.

Formula

T(n,k) = A274651(n+1,k+1) - 1.

A014473 Pascal's triangle - 1: Triangle read by rows: T(n, k) = A007318(n, k) - 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 9, 9, 4, 0, 0, 5, 14, 19, 14, 5, 0, 0, 6, 20, 34, 34, 20, 6, 0, 0, 7, 27, 55, 69, 55, 27, 7, 0, 0, 8, 35, 83, 125, 125, 83, 35, 8, 0, 0, 9, 44, 119, 209, 251, 209, 119, 44, 9, 0, 0, 10, 54, 164, 329, 461, 461, 329, 164, 54, 10, 0
Offset: 0

Views

Author

Keywords

Comments

Indexed as a square array A(n,k): If X is an (n+k)-set and Y a fixed k-subset of X then A(n,k) is equal to the number of n-subsets of X intersecting Y. - Peter Luschny, Apr 20 2012

Examples

			Triangle begins:
   0;
   0, 0;
   0, 1,  0;
   0, 2,  2,  0;
   0, 3,  5,  3,  0;
   0, 4,  9,  9,  4,  0;
   0, 5, 14, 19, 14,  5, 0;
   0, 6, 20, 34, 34, 20, 6, 0;
   ...
Seen as a square array read by antidiagonals:
  [0] 0, 0,  0,  0,   0,   0,   0,    0,    0,    0,    0,     0, ... A000004
  [1] 0, 1,  2,  3,   4,   5,   6,    7,    8,    9,   10,    11, ... A001477
  [2] 0, 2,  5,  9,  14,  20,  27,   35,   44,   54,   65,    77, ... A000096
  [3] 0, 3,  9, 19,  34,  55,  83,  119,  164,  219,  285,   363, ... A062748
  [4] 0, 4, 14, 34,  69, 125, 209,  329,  494,  714, 1000,  1364, ... A063258
  [5] 0, 5, 20, 55, 125, 251, 461,  791, 1286, 2001, 3002,  4367, ... A062988
  [6] 0, 6, 27, 83, 209, 461, 923, 1715, 3002, 5004, 8007, 12375, ... A124089
		

Crossrefs

Triangle without zeros: A014430.
Related: A323211 (A007318(n, k) + 1).
A000295 (row sums), A059841 (alternating row sums), A030662(n-1) (central terms).
Columns include A000096, A062748, A062988, A063258.
Diagonals of A(n, n+d): A030662 (d=0), A010763 (d=1), A322938 (d=2).

Programs

  • Haskell
    a014473 n k = a014473_tabl !! n !! k
    a014473_row n = a014473_tabl !! n
    a014473_tabl = map (map (subtract 1)) a007318_tabl
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Magma
    [Binomial(n,k)-1: k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
    
  • Maple
    with(combstruct): for n from 0 to 11 do seq(-1+count(Combination(n), size=m), m = 0 .. n) od; # Zerinvary Lajos, Apr 09 2008
    # The rows of the square array:
    Arow := proc(n, len) local gf, ser;
    gf := (x - 1)^(-n - 1) + (-1)^(n + 1)/(x*(x - 1));
    ser := series(gf, x, len+2): seq((-1)^(n+1)*coeff(ser, x, j), j=0..len) end:
    for n from 0 to 9 do lprint([n], Arow(n, 12)) od; # Peter Luschny, Feb 13 2019
  • Mathematica
    Table[Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
  • SageMath
    flatten([[binomial(n,k)-1 for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024

Formula

G.f.: x^2*y/((1 - x)*(1 - x*y)*(1 - x*(1 + y))). - Ralf Stephan, Jan 24 2005
T(n,k) = A109128(n,k) - A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 10 2012
T(n, k) = T(n-1, k-1) + T(n-1, k) + 1, 0 < k < n with T(n, 0) = T(n, n) = 0. - Reinhard Zumkeller, Jul 18 2015
If seen as a square array read by antidiagonals the generating function of row n is: G(n) = (x - 1)^(-n - 1) + (-1)^(n + 1)/(x*(x - 1)). - Peter Luschny, Feb 13 2019
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..floor(n/2)} T(n-k, k) = A129696(n-2).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n-1), where b(n) is the repeating pattern {0, 0, -1, -2, -1, 1, 1, -1, -2, -1, 0, 0}_{n=0..11}, with b(n) = b(n-12). (End)

Extensions

More terms from Erich Friedman

A094718 Array T read by antidiagonals: T(n,k) is the number of involutions avoiding 132 and 12...k.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 4, 1, 0, 1, 2, 3, 5, 4, 1, 0, 1, 2, 3, 6, 8, 8, 1, 0, 1, 2, 3, 6, 9, 13, 8, 1, 0, 1, 2, 3, 6, 10, 18, 21, 16, 1, 0, 1, 2, 3, 6, 10, 19, 27, 34, 16, 1, 0, 1, 2, 3, 6, 10, 20, 33, 54, 55, 32, 1, 0, 1, 2, 3, 6, 10, 20, 34, 61, 81, 89, 32, 1
Offset: 1

Views

Author

Ralf Stephan, May 23 2004

Keywords

Comments

Also, number of paths along a corridor with width k, starting from one side (from H. Bottomley's comment in A061551).
Rows converge to binomial(n,floor(n/2)) (A001405).
Note that the rows and columns start at 1, which for example obscures the fact that the first row refers to A000007 and not to A000004. A better choice is the indexing 0 <= k and 0 <= n. The Maple program below uses this indexing and builds only on the roots of -1. - Peter Luschny, Sep 17 2020

Examples

			Array begins
  0   0   0   0   0   0   0   0   0   0 ...
  1   1   1   1   1   1   1   1   1   1 ...
  1   2   2   4   4   8   8  16  16  32 ...
  1   2   3   5   8  13  21  34  55  89 ...
  1   2   3   6   9  18  27  54  81 162 ...
  1   2   3   6  10  19  33  61 108 197 ...
  1   2   3   6  10  20  34  68 116 232 ...
  1   2   3   6  10  20  35  69 124 241 ...
  1   2   3   6  10  20  35  70 125 250 ...
  1   2   3   6  10  20  35  70 126 251 ...
  ...
		

Crossrefs

Main diagonal is A014495, antidiagonal sums are in A094719.
Cf. A080934 (permutations).

Programs

  • Maple
    X := (j, n) -> (-1)^(j/(n+1)) - (-1)^((n-j+1)/(n+1)):
    R := n -> select(k -> type(k, odd), [$(1..n)]):
    T := (n, k) -> add((2 + X(j,n))*X(j,n)^k, j in R(n))/(n+1):
    seq(lprint([n], seq(simplify(T(n, k)), k=0..10)), n=0..9); # Peter Luschny, Sep 17 2020
  • Mathematica
    U = ChebyshevU;
    m = maxExponent = 14;
    row[1] = Array[0&, m];
    row[k_] := 1/(x U[k, 1/(2x)])*Sum[U[j, 1/(2x)], {j, 0, k-1}] + O[x]^m // CoefficientList[#, x]& // Rest;
    T = Table[row[n], {n, 1, m}];
    Table[T[[n-k+1, k]], {n, 1, m-1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)

Formula

G.f. for k-th row: 1/(x*U(k, 1/(2*x))) * Sum_{j=0..k-1} U(j, 1/(2*x)), with U(k, x) the Chebyshev polynomials of second kind. [Clarified by Jean-François Alcover, Nov 17 2018]
T(n, k) = (1/(n+1))*Sum_{j=1..n, j odd} (2 + [j, n]) * [j, n]^k where [j, n] := (-1)^(j/(n+1)) - (-1)^((n-j+1)/(n+1)). - Peter Luschny, Sep 17 2020

A198442 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,0).

Original entry on oeis.org

0, 0, 2, 3, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812
Offset: 1

Views

Author

Paul Weisenhorn, Oct 25 2011

Keywords

Comments

If the sequence ends with (1,1,0) Abel wins; if it ends with (1,0,0) Kain wins.
Abel(n) = A002620(n-1) = (2*n*(n - 2) + 1 - (-1)^n)/8.
Kain(n) = A004526(n-1) = floor((n - 1)/2).
Win probability for Abel = sum(Abel(n)/2^n) = 2/3.
Win probability for Kain = sum(Kain(n)/2^n) = 1/3.
Mean length of the game = sum(n*a(n)/2^n) = 16/3.
Essentially the same as A035106. - R. J. Mathar, Oct 27 2011
The sequence 2*a(n) is denoted as chi(n) by McKee (1994) and is the degree of the division polynomial f_n as a polynomial in x. He notes that "If x is given weight 1, a is given weight 2, and b is given weight 3, then all the terms in f_n(a, b, x) have weight chi(n)". - Michael Somos, Jan 09 2015
In Duistermaat (2010), at the end of section 11.2 The Elliptic Billiard, on page 492 the number of k-periodic fibers counted with multiplicities of the QRT root is given by equation (11.2.8) as "1/4 k^2 + 3{k/2}(1 - {k/2}) - 1 = n^2 - 1 when k = 2n, n^2 + n when k = 2n+1, for every integer k." - Michael Somos, Mar 14 2023

Examples

			For n = 6 the a(6) = 8 solutions are (0,0,0,1,1,0), (0,1,0,1,1,0),(0,0,1,1,1,0), (1,0,1,1,1,0), (0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and
  (0,0,0,1,0,0), (0,1,0,1,0,0) for Kain.
G.f. = 2*x^3 + 3*x^4 + 6*x^5 + 8*x^6 + 12*x^7 + 15*x^8 + 20*x^9 + ...
		

References

  • J. J. Duistermaat, Discrete Integrable Systems, 2010, Springer Science+Business Media.
  • A. Engel, Wahrscheinlichkeitsrechnung und Statistik, Band 2, Klett, 1978, pages 25-26.

Crossrefs

Programs

  • Magma
    [(2*n^2-5-3*(-1)^n)/8: n in [1..60]]; // Vincenzo Librandi, Oct 28 2011
    
  • Maple
    for n from 1 by 2 to 99 do
      a(n):=(n^2-1)/4:
      a(n+1):=(n+1)^2/4-1:
    end do:
    seq(a(n),n=1..100);
  • Mathematica
    a[ n_] := Quotient[ n^2 - 1, 4]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    a(n)=([1,1,0,0,0,0;0,0,1,1,0,0;0,1,0,0,1,0;0,0,0,1,1,0;0,0,0,0,0,2;0,0,0,0,0,2]^n)[1,5] \\ Charles R Greathouse IV, Oct 26 2011
    
  • PARI
    {a(n) = (n^2 - 1) \ 4}; /* Michael Somos, Jan 09 2015 */
    
  • Perl
    sub a {
        my ($t, $n) = (0, shift);
        for (0..((1<<$n)-1)) {
            my $str = substr unpack("B32", pack("N", $_)), -$n;
            $t++ if ($str =~ /1.0$/ and not $str =~ /1.0./);
        }
        return $t
    } # Charles R Greathouse IV, Oct 26 2011
    
  • Sage
    def A198442():
        yield 0
        x, y = 0, 2
        while True:
           yield x
           x, y = x + y, x//y + 1
    a = A198442(); print([next(a) for i in range(57)]) # Peter Luschny, Dec 22 2015

Formula

a(n) = (2*n^2 - 5 - 3*(-1)^n)/8.
a(2*n) = n^2 - 1; a(2*n+1) = n*(n + 1).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) with n>=4.
G.f.: x^3*(2 - x)/((1 + x)*(1 - x)^3). - R. J. Mathar, Oct 27 2011
a(n) = a(-n) for all n in Z. a(0) = -1. - Michael Somos, Jan 09 2015
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-1 - a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 09 2015
1 = a(n) - a(n+1) - a(n+2) + a(n+3), 2 = a(n) - 2*a(n+2) + a(n+4) for all n in Z. - Michael Somos, Jan 09 2015
a(n) = A002620(n+2) - A052928(n+2) for n >= 1. (Note A265611(n) = A002620(n+1) + A052928(n+1) for n >= 1.) - Peter Luschny, Dec 22 2015
a(n+1) = A110654(n)^2 + A110654(n)*(2 - (n mod 2)), n >= 0. - Fred Daniel Kline, Jun 08 2016
a(n) = A004526(n)*A004526(n+3). - Fred Daniel Kline, Aug 04 2016
a(n) = floor((n^2 - 1)/4). - Bruno Berselli, Mar 15 2021

Extensions

a(12) inserted by Charles R Greathouse IV, Oct 26 2011

A213177 Number T(n,k) of parts in all partitions of n with largest multiplicity k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 3, 0, 3, 0, 3, 5, 0, 4, 0, 5, 6, 4, 0, 5, 0, 8, 9, 7, 5, 0, 6, 0, 10, 13, 13, 5, 6, 0, 7, 0, 13, 23, 14, 15, 6, 7, 0, 8, 0, 18, 30, 27, 16, 13, 7, 8, 0, 9, 0, 25, 44, 33, 30, 18, 15, 8, 9, 0, 10, 0, 30, 58, 55, 36, 34, 15, 17, 9, 10, 0, 11
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2013

Keywords

Examples

			T(6,1) = 8: partitions of 6 with largest multiplicity 1 are [3,2,1], [4,2], [5,1], [6], with 3+2+2+1 = 8 parts.
T(6,2) = 9: [2,2,1,1], [3,3], [4,1,1].
T(6,3) = 7: [2,2,2], [3,1,1,1].
T(6,4) = 5: [2,1,1,1,1].
T(6,5) = 0.
T(6,6) = 6: [1,1,1,1,1,1].
Triangle begins:
  0;
  0,  1;
  0,  1,  2;
  0,  3,  0,  3;
  0,  3,  5,  0,  4;
  0,  5,  6,  4,  0,  5;
  0,  8,  9,  7,  5,  0,  6;
  0, 10, 13, 13,  5,  6,  0,  7;
  0, 13, 23, 14, 15,  6,  7,  0,  8;
  ...
		

Crossrefs

Row sums give: A006128.
Main diagonal and first lower diagonal give: A001477, A063524.
T(2n,n) gives A320381.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    T:= (n, k)-> b(n, n, k)[2] -b(n, n, k-1)[2]:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[b[n-i*j, i-1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]]; T[, 0] = 0; T[n, k_] := b[n, n, k][[2]] - b[n, n, k-1][[2]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

T(n,k) = A210485(n,k) - A210485(n,k-1) for k>0, T(n,0) = 0.

A242498 Number T(n,k) of compositions of n, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, -floor(n/2)+(n mod 2)<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 2, 1, 0, 1, 1, 1, 0, 3, 2, 0, 1, 3, 4, 1, 4, 3, 0, 1, 1, 2, 1, 6, 9, 3, 5, 4, 0, 1, 4, 9, 6, 11, 16, 6, 6, 5, 0, 1, 1, 3, 3, 11, 24, 18, 19, 25, 10, 7, 6, 0, 1, 5, 16, 18, 28, 51, 40, 31, 36, 15, 8, 7, 0, 1, 1, 4, 6, 19, 51, 60, 65, 95, 75, 48, 49, 21, 9, 8, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 16 2014

Keywords

Comments

T(n,k) = T(n+k,-k).

Examples

			Triangle T(n,k) begins:
: n\k : -5 -4 -3  -2  -1   0   1   2   3   4   5   6  7  8  9 10 ...
+-----+---------------------------------------------------------
:  0  :                    1;
:  1  :                        1;
:  2  :                1,  0,  0,  1;
:  3  :                    2,  1,  0,  1;
:  4  :            1,  1,  0,  3,  2,  0,  1;
:  5  :                3,  4,  1,  4,  3,  0,  1;
:  6  :        1,  2,  1,  6,  9,  3,  5,  4,  0,  1;
:  7  :            4,  9,  6, 11, 16,  6,  6,  5,  0, 1;
:  8  :     1, 3,  3, 11, 24, 18, 19, 25, 10,  7,  6, 0, 1;
:  9  :        5, 16, 18, 28, 51, 40, 31, 36, 15,  8, 7, 0, 1;
: 10  :  1, 4, 6, 19, 51, 60, 65, 95, 75, 48, 49, 21, 9, 8, 0, 1;
		

Crossrefs

Row sums give A011782.
Diagonals include: A000012, A000004, A001477, A000217, A000290, A180415.
Row lengths give A016777(floor(n/2)).

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, expand(
          add(x^(j*(2*irem(i, 2)-1))*b(n-i*j, i-1, p+j)/j!, j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i<1, 0, Expand[Sum[x^(j*(2*Mod[i, 2]-1))*b[n-i*j, i-1, p+j]/j!, {j, 0, n/i}]]]] ; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)

A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 3, 3, 1, 0, 1, 1, 1, 4, 6, 6, 1, 0, 1, 1, 1, 5, 10, 16, 12, 1, 0, 1, 1, 1, 6, 15, 32, 43, 25, 1, 0, 1, 1, 1, 7, 21, 55, 105, 120, 52, 1, 0, 1, 1, 1, 8, 28, 86, 210, 356, 339, 113, 1, 0, 1, 1, 1, 9, 36, 126, 371, 826, 1227, 985, 247, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 24 2018

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,   0,   0,   0,    0,    0,    0,    0, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  2,   3,   4,   5,    6,    7,    8,    9, ...
  1,  3,   6,  10,  15,   21,   28,   36,   45, ...
  1,  6,  16,  32,  55,   86,  126,  176,  237, ...
  1, 12,  43, 105, 210,  371,  602,  918, 1335, ...
  1, 25, 120, 356, 826, 1647, 2961, 4936, 7767, ...
		

Crossrefs

Rows include (offsets may differ): A000004, A000012, A000027, A000217, A134465.
Main diagonal gives A316102.

Programs

  • Maple
    wtr:= proc(p) local b; b:= proc(n, i) option remember;
           `if`(n=0, 1, `if`(i<1, 0, add(binomial(p(i), j)*
             b(n-i*j, i-1), j=0..n/i))) end: j-> b(j$2)
          end:
    g:= proc(k) option remember; local b, t; b[0]:= j->
         `if`(j<2, j, b[k](j-1)); for t to k do
           b[t]:= wtr(b[t-1]) od: eval(b[0])
        end:
    A:= (n, k)-> g(k)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    wtr[p_] := Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[p[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; b[#, #]&];
    g[k_] := g[k] = Module[{b, t}, b[0][j_] := If[j < 2, j, b[k][j - 1]]; For[ t = 1, t <= k + 1, t++, b[t] = wtr[b[t - 1]]]; b[0]];
    A[n_, k_] := g[k][n];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)

A324362 Total number of occurrences of k in the (signed) displacement sets of all permutations of [n+k] divided by k!; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 4, 0, 1, 5, 13, 15, 0, 1, 7, 28, 67, 76, 0, 1, 9, 49, 179, 411, 455, 0, 1, 11, 76, 375, 1306, 2921, 3186, 0, 1, 13, 109, 679, 3181, 10757, 23633, 25487, 0, 1, 15, 148, 1115, 6576, 29843, 98932, 214551, 229384, 0, 1, 17, 193, 1707, 12151, 69299, 307833, 1006007, 2160343, 2293839
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Examples

			Square array A(n,k) begins:
    0,    0,     0,     0,     0,      0,      0, ...
    1,    1,     1,     1,     1,      1,      1, ...
    1,    3,     5,     7,     9,     11,     13, ...
    4,   13,    28,    49,    76,    109,    148, ...
   15,   67,   179,   375,   679,   1115,   1707, ...
   76,  411,  1306,  3181,  6576,  12151,  20686, ...
  455, 2921, 10757, 29843, 69299, 142205, 266321, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A005408, A056107(k+1).
Main diagonal gives A324361.
Cf. A306234.

Programs

  • Maple
    A:= (n, k)-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    m = 10;
    col[k_] := col[k] = CoefficientList[(1-Exp[-x])/(1-x)^(k+1)+O[x]^(m+1), x]* Range[0, m]!;
    A[n_, k_] := col[k][[n+1]];
    Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 03 2021 *)

Formula

E.g.f. of column k: (1-exp(-x))/(1-x)^(k+1).
A(n,k) = -1/k! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+k-j)!.
A(n,k) = A306234(n+k,k).
Previous Showing 51-60 of 350 results. Next