cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 5121 results. Next

A328956 Numbers k such that sigma_0(k) = omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 104, 106, 111, 112, 115, 116, 117
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2019

Keywords

Comments

First differs from A084227 in having 60.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
  35: {3,4}
  38: {1,8}
  39: {2,6}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
		

Crossrefs

Zeros of A328958.
The complement is A328957.
Prime signature is A124010.
Omega-sequence is A323023.
omega(n) * Omega(n) is A113901(n).
(Omega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - omega(n) * Omega(n) is A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is A328959(n).

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==PrimeOmega[#]*PrimeNu[#]&]
  • PARI
    is(k) = {my(f = factor(k)); numdiv(f) == omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024

Formula

A000005(a(n)) = A001222(a(n)) * A001221(a(n)).

A328958 a(n) = d(n) - (omega(n) * bigomega(n)), where d (number of divisors) = A000005, omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, -1, 1, 0, 0, -1, 1, 2, 1, 0, 0, 0, 0, -1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, -1, 1, 0, -1
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Comments

a(n) = sigma_0(n) - omega(n) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222. - The original name of the sequence.

Examples

			a(144) = sigma_0(144) - omega(144) * nu(144) = 15 - 6 * 2 = 3.
		

Crossrefs

Positions of first appearances are A328962.
Zeros are A328956.
Nonzeros are A328957.
omega(n) * nu(n) is A113901(n).
(omega(n) - 1) * nu(n) is A307409(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-PrimeOmega[n]*PrimeNu[n],{n,100}]
  • PARI
    A328958(n) = (numdiv(n)-(omega(n)*bigomega(n))); \\ Antti Karttunen, Jan 27 2025

Formula

a(n) = A000005(n) - A001222(n) * A001221(n) = A000005(n) - A113901(n).

Extensions

More terms added and the function names in the definition replaced with standard OEIS ones - Antti Karttunen, Jan 27 2025

A339304 Irregular triangle read by rows T(n,k) in which row n has length the partition number A000041(n-1) and columns k give the number of divisors function A000005, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 1, 1, 4, 3, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 4, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 29 2020

Keywords

Comments

T(n,k) is also the number of divisors of A336811(n,k).
Conjecture: the sum of row n equals A138137(n), the total number of parts in the last section of the set of partitions of n.

Examples

			Triangle begins:
  1;
  2;
  2, 1;
  3, 2, 1;
  2, 2, 2, 1, 1;
  4, 3, 2, 2, 2, 1, 1;
  2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1;
  4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1;
  3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Number of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000005.
Row sums give A138137 (conjectured).

Programs

  • Mathematica
    A339304row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[0,n-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]];Array[A339304row,10] (* Paolo Xausa, Sep 01 2023 *)

Formula

a(m) = A000005(A336811(m)).
T(n,k) = A000005(A336811(n,k)).

A229276 Composite squarefree numbers n such that p-tau(n) divides n+sigma(n), where p are the prime factors of n, tau(n) = A000005(n) and sigma(n) = A000203(n).

Original entry on oeis.org

6, 10, 15, 66, 145, 231, 435, 1221, 11571, 99093, 105502, 292434, 449854, 585429, 643858, 968014, 1372494, 1787091, 1939434, 4659114, 5524014, 5654334, 6250371, 6974007, 19495374, 19821714, 28488039, 34701369, 46183893, 81133734, 213352233, 230140869
Offset: 1

Views

Author

Paolo P. Lava, Sep 19 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 435 are 3, 5, 29 and sigma(435) = 720, tau(435) = 8.
435 + 720 = 1155 and 1155 / (3 - 8) = -231, 1155 / (5 - 8) = -385, 1155 / (29 - 8) = 55.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
    else if not type((n+sigma(n))/(a[i][1]-tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(2*10^6);

Extensions

a(21)-a(33) from Giovanni Resta, Sep 20 2013
First term deleted by Paolo P. Lava, Sep 23 2013

A253139 a(n) = lcm_{d|n} tau(d), where tau(d) represents the number of divisors of d (A000005(d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 12, 6, 4, 2, 12, 2, 4, 4, 60, 2, 12, 2, 12, 4, 4, 2, 24, 6, 4, 12, 12, 2, 8, 2, 60, 4, 4, 4, 36, 2, 4, 4, 24, 2, 8, 2, 12, 12, 4, 2, 120, 6, 12, 4, 12, 2, 24, 4, 24, 4, 4, 2, 24, 2, 4, 12, 420, 4, 8, 2, 12, 4, 8, 2, 72, 2, 4, 12, 12, 4, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 27 2014

Keywords

Comments

A divisibility sequence (cf. Ward link and second formula).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			The divisors of 20 are 1, 2, 4, 5, 10 and 20, which have 1, 2, 3, 2, 4 and 6 divisors respectively. The least common multiple of 1, 2, 3, 2, 4 and 6 is 12; therefore, a(20) = 12.
		

Crossrefs

A250270 gives range of values. A141586 lists numbers n such that a(n) divides n.

Programs

  • Mathematica
    Table[LCM@@DivisorSigma[0,Divisors[n]],{n,100}] (* Harvey P. Dale, Sep 01 2017 *)
    lcm[n_] := lcm[n] = LCM @@ Range[n]; a[1] = 1; a[n_] := Times @@ (lcm [Last[#] + 1] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ Michel Marcus, Jan 23 2015

Formula

If n = Product_ prime(i)^e(i), then a(n) = Product_ A003418(e(i)+1).
a(n) = Product_{d|n} A253141(d).

A262511 Numbers k for which there is exactly one solution to x - d(x) = k, where d(k) is the number of divisors of k (A000005). Positions of ones in A060990.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 12, 14, 15, 16, 18, 21, 23, 26, 30, 31, 32, 41, 42, 44, 45, 47, 53, 54, 59, 60, 61, 71, 72, 73, 76, 77, 80, 82, 83, 84, 86, 89, 90, 92, 93, 94, 95, 97, 99, 101, 104, 105, 106, 110, 115, 119, 121, 122, 127, 135, 139, 146, 148, 149, 151, 154, 158, 161, 169, 171, 173, 176, 177, 183, 186, 188, 189, 190, 191, 192, 194, 195, 199, 200, 202
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2015

Keywords

Crossrefs

Cf. A262512 (gives the corresponding x).
Cf. A262510 (a subsequence).
Subsequence of A236562.

Programs

  • PARI
    allocatemem(123456789);
    uplim = 14414400 + 504; \\ = A002182(49) + A002183(49).
    v060990 = vector(uplim);
    for(n=3, uplim, v060990[n-numdiv(n)]++);
    A060990 = n -> if(!n,2,v060990[n]);
    uplim2 = 14414400;
    n=0; k=1; while(n <= uplim2, if(1==A060990(n), write("b262511_big.txt", k, " ", n); k++); n++;);
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A262511 (ZERO-POS 1 1 (COMPOSE -1+ A060990)))

Formula

Other identities. For all n >= 1:
a(n) = A049820(A262512(n)).

A320779 Inverse Euler transform of the number of divisors function A000005.

Original entry on oeis.org

1, 1, 0, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, -1, 2, 1, -2, -2, 2, 3, -4, 0, 3, -3, 3, -2, -2, 2, 1, 7, -15, 0, 17, -11, -1, 0, 9, -4, -18, 26, -10, -10, 24, -17, -15, 21, 27, -42, -37, 69, 43, -113, -11, 149, -98, -24, 67, -57, 24, -53, 213, -243, -193, 704
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).

Crossrefs

Cf. A000005.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 0))):
    seq(a(n), n = 1..64); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[DivisorSigma[0,n],{n,100}]]
  • Python
    from functools import lru_cache
    from sympy import mobius, divisors, divisor_count
    def A320779(n):
        @lru_cache(maxsize=None)
        def b(n): return divisor_count(n)
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 15 2024

A365399 Length of the longest subsequence of 1, ..., n on which the number of divisors function tau A000005 is nondecreasing.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 16, 17, 17, 17, 18, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27
Offset: 1

Views

Author

Peter Luschny, Sep 03 2023

Keywords

Comments

The sequence was inspired by A365339.

Examples

			The terms of the subsequences of A000005 are marked by '*'. They start:
  1*, 2,  2 , 3,  2, 4,  2, 4,  ... -> a(1) = 1
  1*, 2*, 2 , 3,  2, 4,  2, 4,  ... -> a(2) = 2
  1*, 2*, 2*, 3,  2, 4,  2, 4,  ... -> a(3) = 3
  1*, 2*, 2*, 3*, 2, 4,  2, 4,  ... -> a(4) = 4
  1*, 2*, 2*, 3*, 2, 4,  2, 4,  ... -> a(5) = 4
  1*, 2*, 2*, 3*, 2, 4*, 2, 4,  ... -> a(6) = 5
  1*, 2*, 2*, 3*, 2, 4*, 2, 4,  ... -> a(7) = 5
  1*, 2*, 2*, 3*, 2, 4*, 2, 4*, ... -> a(8) = 6
Example: a(2000000) = 450033.
		

Crossrefs

Programs

  • Julia
    # Computes the first N terms of the sequence using function tau from A000005.
    function LLS_list(seq, N)
        lst = zeros(Int64, N)
        dyn = zeros(Int64, N)
        for n in 1:N
            p = seq(n)
            nxt = dyn[p] + 1
            while p <= N && dyn[p] < nxt
                dyn[p] = nxt
                p += 1
            end
            lst[n] = dyn[n]
        end
        return lst
    end
    A365399List(N) = LLS_list(tau, N)
    println(A365399List(69))
    
  • Python
    from bisect import bisect
    from sympy import divisor_count
    def A365399(n):
        plist, qlist, c = tuple(divisor_count(i) for i in range(1,n+1)), [0]*(n+1), 0
        for i in range(n):
            qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i
            c = max(c,a)
        return c # Chai Wah Wu, Sep 04 2023

Formula

a(n+1) - a(n) <= 1.

A067888 Numbers k such that tau(k+1) = tau(k-1) where tau(k) = A000005(k).

Original entry on oeis.org

4, 6, 7, 9, 12, 18, 19, 30, 34, 41, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 103, 108, 124, 129, 137, 138, 142, 144, 150, 153, 160, 180, 183, 184, 185, 186, 192, 198, 199, 202, 204, 214, 216, 218, 220, 228, 231, 236, 240, 243, 244, 247, 248, 249, 266, 270, 282
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

If (p,p+2) are twin primes, then the composite number p+1 is in this sequence. The primes occurring in this sequence are listed in A067889. See A055574 for the analog with sigma instead of tau. - M. F. Hasler, Aug 06 2015

Crossrefs

Equals A062832 + 1. - Michel Marcus, Feb 11 2018

Programs

  • Mathematica
    Select[Range[300], Equal @@ DivisorSigma[0, # + {-1, 1}] &] (* Amiram Eldar, Jan 23 2025 *)
  • PARI
    is_A067888(n)=n>1&&numdiv(n-1)==numdiv(n+1) \\ M. F. Hasler, Aug 06 2015

A088880 Number of different values of A000005(m) when A056239(m) is equal to n.

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 8, 6, 12, 10, 16, 13, 25, 18, 28, 25, 40, 32, 51, 40, 62, 51, 76, 62, 99, 77, 112, 92, 138, 109, 165, 130, 189, 153, 220, 178, 267, 208, 292, 240, 347, 274, 397, 315, 445, 361, 512, 407, 591, 464, 647, 524, 746, 588, 830, 664, 928, 746, 1034
Offset: 0

Views

Author

Naohiro Nomoto, Nov 28 2003

Keywords

Comments

Number of distinct values of Product_{k=1..n} (m(k,P)+1) where m(k,P) is multiplicity of part k in partition P, as P ranges over all partitions of n. - Vladeta Jovovic, May 24 2008

Crossrefs

Programs

  • Maple
    multipl := proc(P,p)
            local a;
            a := 0 ;
            for el in P do
                    if el = p then
                            a := a+1 ;
                    end if;
            end do;
            a ;
    end proc:
    A088880 := proc(n)
            local pro,pa,m,p;
            pro := {} ;
            for pa in combinat[partition](n) do
                    m := 1 ;
                    for p from 1 to n do
                            m := m*(1+multipl(pa,p)) ;
                    end do:
                    pro := pro union {m} ;
            end do:
            nops(pro) ;
    end proc: # R. J. Mathar, Sep 27 2011
    # second Maple program
    b:= proc(n, i) option remember; `if`(n=0 or i<2, {n+1},
           {seq(map(p->p*(j+1), b(n-i*j, i-1))[], j=0..n/i)})
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i<2, {n+1}, Table[b[n-i*j, i-1]*(j+1), {j, 0, n/i}] // Flatten // Union]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
Previous Showing 51-60 of 5121 results. Next