cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A277432 E.g.f.: sinh(sqrt(2)*x)/(sqrt(2)*(1-x)).

Original entry on oeis.org

0, 1, 2, 8, 32, 164, 984, 6896, 55168, 496528, 4965280, 54618112, 655417344, 8520425536, 119285957504, 1789289362688, 28628629803008, 486686706651392, 8760360719725056, 166446853674776576, 3328937073495531520, 69907678543406162944, 1537968927954935584768
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 14 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,2,8]; [0] cat [n le 3 select I[n] else n*Self(n-1) + 2*Self(n-2) - 2*(n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 19 2018
  • Maple
    f:= gfun:-rectoproc({a(n) = n*a(n-1) + 2*a(n-2) - 2*(n-2)*a(n-3),a(0)=0,a(1)=1,a(2)=2},a(n),remember):
    map(f, [$0..20]); # Robert Israel, Oct 30 2016
  • Mathematica
    Round@Table[(Gamma[n + 1, Sqrt[2]] Exp[Sqrt[2]] - Gamma[n + 1, -Sqrt[2]]/Exp[Sqrt[2]])/(2 Sqrt[2]), {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
    Expand@Table[SeriesCoefficient[Sinh[Sqrt[2] x]/(Sqrt[2] (1 - x)), {x, 0, n}] n!, {n, 0, 20}]
  • PARI
    x='x+O('x^30); concat([0], round(Vec(serlaplace(sinh(sqrt(2)*x)/( sqrt(2)*(1-x)))))) \\ G. C. Greubel, Aug 19 2018
    

Formula

a(n) = (Gamma(n+1, sqrt(2))*exp(sqrt(2)) - Gamma(n+1, -sqrt(2))/exp(sqrt(2))) / (2*sqrt(2)).
a(n) ~ sqrt(Pi)*sinh(sqrt(2))*n^(n+1/2)*exp(-n).
D-finite with recurrence: a(n) = n*a(n-1) + 2*a(n-2) - 2*(n-2)*a(n-3).
Gamma(n+1, sqrt(2))*exp(sqrt(2)) = A277431(n) + sqrt(2)*a(n).
Gamma(n+1, -sqrt(2))/exp(sqrt(2)) = A277431(n) - sqrt(2)*a(n).
For n > 0, a(2*n) = 2*n*a(2*n-1).

A335111 a(n) = n! * Sum_{k=0..n-1} (-2)^k / k!.

Original entry on oeis.org

0, 1, -2, 6, -8, 40, 48, 784, 5248, 49536, 490240, 5403904, 64822272, 842742784, 11798284288, 176974510080, 2831591636992, 48137058942976, 866467058614272, 16462874118651904, 329257482362552320, 6914407129635618816, 152116956851937476608, 3498690007594658430976
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2020

Keywords

Comments

Inverse binomial transform of A000240.

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-2)^k/k!, {k, 0, n - 1}], {n, 0, 23}]
    nmax = 23; CoefficientList[Series[Sum[k! x^k/(1 + 2 x)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[x Exp[-2 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n! * sum(k=0, n-1, (-2)^k / k!); \\ Michel Marcus, May 23 2020

Formula

G.f.: Sum_{k>=1} k! * x^k / (1 + 2*x)^(k + 1).
E.g.f.: x*exp(-2*x) / (1 - x).
a(n) = A000023(n) - A122803(n).
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Jun 08 2022
a(n) = Sum_{k=0..n} (-1)^k * k * A008290(n,k). - Alois P. Heinz, May 20 2023

A344901 Triangle read by rows: T(n,k) is the number of permutations of length n that have k same elements at the same positions with its inverse permutation for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 6, 8, 0, 0, 10, 24, 30, 40, 0, 0, 26, 160, 144, 180, 160, 0, 0, 76, 1140, 1120, 1008, 840, 700, 0, 0, 232, 8988, 9120, 8960, 5376, 4200, 2912, 0, 0, 764, 80864, 80892, 82080, 53760, 30240, 19656, 12768, 0, 0, 2620, 809856, 808640, 808920, 547200, 336000, 157248, 95760, 55680, 0, 0, 9496
Offset: 0

Views

Author

Mikhail Kurkov, Jun 01 2021

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     0,    1;
     0,    0,    2;
     2,    0,    0,    4;
     6,    8,    0,    0,   10;
    24,   30,   40,    0,    0,   26;
   160,  144,  180,  160,    0,    0, 76;
  1140, 1120, 1008,  840,  700,    0,  0, 232;
  8988, 9120, 8960, 5376, 4200, 2912,  0,   0, 764;
  ...
		

Crossrefs

Columns k=0-1 give: A038205, A221145.
Row sums give A000142.
Main diagonal gives A000085.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(b(n-j, t)*
          binomial(n-1, j-1)*(j-1)!, j=`if`(t=1, 1..min(2, n), 3..n)))
        end:
    T:= (n, k)-> binomial(n, k)*b(k, 1)*b(n-k, 0):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Oct 28 2024
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[b[n-j, t]* Binomial[n-1, j-1]*(j-1)!, {j, If[t == 1, Range @ Min[2, n], Range[3, n]]}]];
    T[n_, k_] := Binomial[n, k]*b[k, 1]*b[n-k, 0];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 24 2025, after Alois P. Heinz *)

Formula

T(n,k) = binomial(n,k)*A000085(k)*A038205(n-k).
From Alois P. Heinz, Oct 28 2024: (Start)
Sum_{k=0..n} k * T(n,k) = A052849(n) = A098558(n) for n>=2.
Sum_{k=0..n} (n-k) * T(n,k) = A052571(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
T(n,0) + T(n,1) = A137482(n). (End)

A354941 a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * (-2)^(n-k).

Original entry on oeis.org

1, -1, -10, -2, 488, 4088, -9968, -730480, -9751936, -11540096, 2480655104, 62522038016, 680469314560, -8292439149568, -606011029669888, -15765339965278208, -183530875864317952, 4164677242501038080, 318357069130977181696, 10359690304436314505216, 176911847384965046337536
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^3 k! (-2)^(n - k), {k, 0, n}], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[BesselI[0, 2 Sqrt[x]] Sum[(-2)^k x^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^3 * k! * (-2)^(n-k)); \\ Michel Marcus, Jun 12 2022

Formula

Sum_{n>=0} a(n) * x^n / n!^3 = BesselI(0,2*sqrt(x)) * Sum_{n>=0} (-2)^n * x^n / n!^3.

A381082 Triangle T(n,k) read by rows, where the columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=2.

Original entry on oeis.org

1, -2, 1, 4, -3, 1, -8, 8, -3, 1, 16, -18, 11, -2, 1, -32, 44, -20, 15, 0, 1, 64, -80, 94, 5, 25, 3, 1, -128, 272, 56, 294, 105, 49, 7, 1, 256, 112, 1868, 1596, 1169, 392, 98, 12, 1, -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
  [0]     1;
  [1]    -2,      1;
  [2]     4,     -3,       1;
  [3]    -8,      8,      -3,       1;
  [4]    16,    -18,      11,      -2,       1;
  [5]   -32,     44,     -20,      15,       0,        1;
  [6]    64,    -80,      94,       5,      25,        3,     1;
  [7]  -128,    272,      56,     294,     105,       49,     7,     1;
  [8]   256,    112,    1868,    1596,    1169,      392,    98,    12,    1;
  [9]  -512,   5280,   12216,   16148,   10290,     4305,  1092,   186,   18,     1;
  ...
		

Crossrefs

Cf. A000023 (row sums).
Columns 0,1: A122803, A346397.
Triangles: for m = -3 is A327997; for m = -2 is A137346 (unsigned); for m = -1 is A094816; for m = 0 is A132393; for m = 1 is A269953.

Programs

  • Maple
    T:=(m,n,k)->add(Stirling1(n-i,k)*binomial(n,i)*m^(i)*(-1)^(n-k), i=0..n):
    m:=2:seq(print(seq(T(m,n,k), k=0..n)), n=0..9);

Formula

T(n,k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), where m = 2.

A383380 Expansion of e.g.f. exp(-2*x) / (1-x)^4.

Original entry on oeis.org

1, 2, 8, 40, 248, 1808, 15136, 142784, 1496960, 17254144, 216740864, 2945973248, 43065951232, 673626675200, 11224114860032, 198447384666112, 3710328985124864, 73136238041563136, 1515739708283944960, 32947698735175172096, 749499782353468522496, 17806903161183314378752
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-2*x)/(1-x)^4))

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A000255.
a(n) = n! * Sum_{k=0..n} (-2)^(n-k) * binomial(k+3,3)/(n-k)!.
a(0) = 1, a(1) = 2; a(n) = (n+1)*a(n-1) + 2*(n-1)*a(n-2).
a(n) ~ sqrt(Pi) * n^(n + 7/2) / (3*sqrt(2)*exp(n+2)). - Vaclav Kotesovec, Apr 25 2025

A033167 Positions of the incrementally largest terms in the continued fraction expansion of zeta(3), offset 1 variant.

Original entry on oeis.org

1, 2, 4, 29, 63, 572, 1556, 2013, 2530, 2760, 3019, 4159, 4741, 6820, 10565, 11666, 32859, 139893, 392130, 707970, 1049722, 2081165, 14990404, 36112276, 39552835, 42710787, 199618806
Offset: 1

Views

Author

Keywords

Comments

Positions in this sequence correspond to the n-th term of A013631 at index n-1.
See A229055 for another version.

Crossrefs

Cf. A229055 (= a(n) - 1), A013631 (continued fraction of zeta(3)), A033165, A000023, A033166.

Extensions

More terms from Eric W. Weisstein, Aug 23 2000
More terms from Robert Gerbicz, Aug 22 2006
Edited (with more terms taken from A229055) by N. J. A. Sloane, Jun 16 2021
Edited for offset change in A013631. - Andrew Howroyd, Jul 10 2024

A069146 Numbers m such that m = sigma(abs(k)) - 3k, where k = sigma(m) - 3m.

Original entry on oeis.org

1248, 1596, 28272, 30240, 32760, 463296, 2178540, 12865770, 23569920, 30998250, 45532800, 142990848, 1379454720, 1912369152, 2623977450, 43861478400, 66433720320, 153003540480, 403031236608, 489622536192, 704575228896
Offset: 1

Views

Author

Jason Earls, Apr 08 2002

Keywords

Comments

1.5*10^12 < a(22) <= 7834005405696. If 2^k-1 > 3 is a prime (A000023), then 2^(k-1)*3*19*(2^k-1) is a term. - Giovanni Resta, Dec 11 2019

Examples

			Let n = 1248. The sum of the divisors of n is 3528, so k = 3528 - 3*1248 = -216. The sum of the divisors of 216 is 600 and 600 - 3*(-216) = 1248, so 1248 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5*10^5], DivisorSigma[1, Abs[(k = DivisorSigma[1, #] - 3#)]] -3k == # &] (* Amiram Eldar, Dec 11 2019 *)

Extensions

More terms from David Wasserman, Apr 15 2003
a(12)-a(15) from Amiram Eldar, Dec 11 2019
a(16)-a(21) from Giovanni Resta, Dec 11 2019

A080252 a(n) = n*a(n-1)+4*a(n-2)-4*(n-2)*a(n-3).

Original entry on oeis.org

0, 1, 2, 10, 40, 216, 1296, 9136, 73088, 658048, 6580480, 72386304, 868635648, 11292267520, 158091745280, 2371376195584, 37942019129344, 645014325264384, 11610257854758912, 220594899240681472, 4411897984813629440
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Feb 10 2003

Keywords

Crossrefs

Programs

  • Maple
    A080252 := n -> (exp(2)*GAMMA(1+n,2) - exp(-2)*GAMMA(1+n,-2))/4:
    seq(simplify(A080252(n)), n=0..20); # Peter Luschny, Dec 18 2017
  • Mathematica
    c = CoefficientList[Series[(Sinh[z]*Cosh[z])/(1 - z), {z, 0, 25}], z]; For[n = 0, n < 25, n++; Print[c[[n]]*(n - 1)! ]]
    RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==n*a[n-1]+4a[n-2]-4(n-2)* a[n-3]}, a,{n,20}] (* Harvey P. Dale, Nov 17 2013 *)
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(sinh(x)*cosh(x)/(1-x)))) \\ Altug Alkan, Dec 18 2017

Formula

E.g.f.: sinh(z)*cosh(z)/(1-z).
a(n) ~ n!*(e^2-1/e^2)/4. - Vaclav Kotesovec, Oct 13 2012
a(n) = (exp(2)*Gamma(1+n,2) - exp(-2)*Gamma(1+n,-2))/4 = (A010842(n) - A000023(n))/4. - Peter Luschny, Dec 18 2017

A188143 Binomial transform of A187848.

Original entry on oeis.org

1, 5, 29, 193, 1453, 12209, 113237, 1149241, 12675661, 151095569, 1937411429, 26614052617, 390244490749, 6087782363009, 100728768290645, 1762767028074937, 32542231109506285, 632202858036492593, 12895661952702667205
Offset: 0

Views

Author

Groux Roland, Mar 24 2011

Keywords

Comments

a(n) is also the INVERTi transform of A010842(n+1) starting at n=2.
a(n) is also the moment of order n for the measure of density: exp(x-2) / ((Ei(x-2))^2+Pi^2) over the interval 2..infinity with Ei the exponential integral.
More generally, for every integer k, the sequence a(n,k)=int(x^n*exp(x-k) / ((Ei(x-k))^2+Pi^2), x=k..infinity) is the INVERTi transform of the sequence b(n+1,k), starting at n=2, with b(n,k)=int(x^n*exp(x-k), x=k..infinity) whose e.g.f. is exp(k*x)/(1-x).

Crossrefs

Cf. A000023.

Programs

  • Maple
    with(LinearAlgebra):
    c:= proc(n) option remember; add(n!/k!, k=0..n) end:
    b:= n-> (-1)^(n+1) * Determinant(Matrix(n+2,
            (i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))):
    a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 24 2011
  • Mathematica
    c[n_] := c[n] = Sum[n!/k!, {k, 0, n}]; b[n_] := (-1)^(n+1)*Det[Table[If[0 <= i+1-j, c[i+1-j], 0], {i, 1, n+2}, {j, 1, n+2}]]; a[n_] := Sum[b[k] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)

Formula

a(n) = Integral_{x=2..oo} x^n*exp(x-2)/((Ei(x-2))^2 + Pi^2) dx.
G.f.: 1/x^2 - 3/x - Q(0)/x^2, where Q(k) = 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ exp(2) * n^2 * n!. - Vaclav Kotesovec, Nov 02 2023
Previous Showing 21-30 of 31 results. Next