A058698 a(n) = p(P(n)), P = primes (A000040), p = partition numbers (A000041).
2, 3, 7, 15, 56, 101, 297, 490, 1255, 4565, 6842, 21637, 44583, 63261, 124754, 329931, 831820, 1121505, 2679689, 4697205, 6185689, 13848650, 23338469, 49995925, 133230930, 214481126, 271248950, 431149389, 541946240, 851376628, 3913864295, 5964539504, 11097645016
Offset: 1
Keywords
Examples
a(2) = 3 because the second prime is 3 and there are three partitions of 3: {1, 1, 1}, {1, 2}, {3}.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..500
Programs
-
Haskell
import Data.MemoCombinators (memo2, integral) a058698 n = a058698_list !! (n-1) a058698_list = map (pMemo 1) a000040_list where pMemo = memo2 integral integral p p _ 0 = 1 p k m | m < k = 0 | otherwise = pMemo k (m - k) + pMemo (k + 1) m -- Reinhard Zumkeller, Aug 09 2015
-
Mathematica
Table[PartitionsP[Prime[n]], {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)
Comments