A336811
Irregular triangle read by rows T(n,k) in which the length of row n equals the partition number A000041(n-1) and every column k gives the positive integers A000027, with n >= 1 and k >= 1.
Original entry on oeis.org
1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 1, 1, 6, 4, 3, 2, 2, 1, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
2;
3, 1;
4, 2, 1;
5, 3, 2, 1, 1;
6, 4, 3, 2, 2, 1, 1;
7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1;
8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1;
9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
For n = 6, by definition the length of row 6 is A000041(6-1) = A000041(5) = 7, so the row 6 of triangle has seven terms. Since every column lists the positive integers A000027 so the row 6 is [6, 4, 3, 2, 2, 1, 1].
Then we have that the divisors of the numbers of the 6th row are:
.
6th row of the triangle ----------> 6 4 3 2 2 1 1
3 2 1 1 1
2 1
1
.
There are seven 1's, four 2's, two 3's, one 4 and one 6.
In total there are 7 + 4 + 2 + 1 + 1 = 15 divisors.
On the other hand the last section of the set of the partitions of 6 can be represented in several ways, five of them as shown below:
._ _ _ _ _ _
|_ _ _ | 6 6 6 6
|_ _ _|_ | 3 3 3 3 3 3 3 3
|_ _ | | 4 2 4 2 4 2 4 2
|_ _|_ _|_ | 2 2 2 2 2 2 2 2 2 2 2 2
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
|_| 1 1 1 1
.
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5.
.
In every figure there are seven 1's, four 2's, two 3's, one 4 and one 6, as shown also the 6th row of A182703.
In total there are 7 + 4 + 2 + 1 + 1 = A138137(6) = 15 parts in every figure.
Figure 5 is an arrangement that shows the correspondence between divisors and parts since the columns give the divisors of the terms of 6th row of triangle.
Finally we can see that all divisors of all numbers in the 6th row of the triangle are the same positive integers as all parts in the last section of the set of the partitions of 6.
Example edited by _Omar E. Pol_, Aug 10 2021
Cf.
A000007,
A000041,
A027750,
A028310,
A002865,
A133735,
A135010,
A138121,
A138137,
A182703,
A187219,
A207378,
A221529,
A336812,
A339278,
A340035,
A340061,
A346741.
-
A336811[row_]:=Flatten[Table[ConstantArray[row-m,PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
Array[A336811,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 10 2023 *)
-
f(n) = numbpart(n-1);
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--;); 1+s;}
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021
A221529
Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.
Original entry on oeis.org
1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1
Triangle begins:
------------------------------------------------------
n| k 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------
1| 1;
2| 1, 3;
3| 2, 3, 4;
4| 3, 6, 4, 7;
5| 5, 9, 8, 7, 6;
6| 7, 15, 12, 14, 6, 12;
7| 11, 21, 20, 21, 12, 12, 8;
8| 15, 33, 28, 35, 18, 24, 8, 15;
9| 22, 45, 44, 49, 30, 36, 16, 15, 13;
10| 30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
k A000203 T(10,k)
1 1 * 30 = 30
2 3 * 22 = 66
3 4 * 15 = 60
4 7 * 11 = 77
5 6 * 7 = 42
6 12 * 5 = 60
7 8 * 3 = 24
8 15 * 2 = 30
9 13 * 1 = 13
10 18 * 1 = 18
A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
_ _ _ _ _ _ _ _ _ _
42 |_ _ _ _ _ |
|_ _ _ _ _|_ |
|_ _ _ _ _ _|_ |
|_ _ _ _ | |
|_ _ _ _|_ _ _|_ |
|_ _ _ _ | |
|_ _ _ _|_ | |
|_ _ _ _ _|_ | |
|_ _ _ | | |
|_ _ _|_ | | |
|_ _ | | | |
|_ _|_ _|_ _|_ _|_ | _
30 |_ _ _ _ _ | | | | 30
|_ _ _ _ _|_ | | | |
|_ _ _ | | | | |
|_ _ _|_ _ _|_ | | | |
|_ _ _ _ | | | | |
|_ _ _ _|_ | | | | |
|_ _ _ | | | | | |
|_ _ _|_ _|_ _|_ | | _|_|
22 |_ _ _ _ | | | | | 22
|_ _ _ _|_ | | | | |
|_ _ _ _ _|_ | | | | |
|_ _ _ | | | | | |
|_ _ _|_ | | | | | |
|_ _ | | | | | | |
|_ _|_ _|_ _|_ | | | _|_ _|
15 |_ _ _ _ | | | | | | | 15
|_ _ _ _|_ | | | | | | |
|_ _ _ | | | | | | | |
|_ _ _|_ _|_ | | | | _|_|_ _|
11 |_ _ _ | | | | | | | | 11
|_ _ _|_ | | | | | | | |
|_ _ | | | | | | | | |
|_ _|_ _|_ | | | | | _| |_ _ _|
7 |_ _ _ | | | | | | | | | 7
|_ _ _|_ | | | | | | _|_ _|_ _ _|
5 |_ _ | | | | | | | | | | | 5
|_ _|_ | | | | | | | _| | |_ _ _ _|
3 |_ _ | | | | | | | | _|_ _|_|_ _ _ _| 3
2 |_ | | | | | | | | | _ _|_ _|_|_ _ _ _ _| 2
1 |_|_|_|_|_|_|_|_|_|_| |_ _|_|_|_ _ _ _ _ _| 1
.
Figure 1. Figure 2.
Front view of the Lateral view
prism of partitions. of the tower.
.
. _ _ _ _ _ _ _ _ _ _
| | | | | | | | |_| 1
| | | | | | |_|_ _| 2
| | | | |_|_ |_ _| 3
| | |_|_ |_ _ _| 4
| |_ _ |_ |_ _ _| 5
|_ _ |_ |_ _ _ _| 6
|_ | |_ _ _ _| 7
|_ |_ _ _ _ _| 8
| | 9
|_ _ _ _ _ _| 10
.
Figure 3.
Top view
of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of triangle, flattened)
- T. J. Osler, A. Hassen and T. R. Chandrupatia, Surprising connections between partitions and divisors, The College Mathematics Journal, Vol. 38. No. 4, Sep. 2007, 278-287 (see p. 287).
- Omar E. Pol, Illustration of the prism, the tower and the 10th row of the triangle
Cf.
A000070,
A000203,
A026792,
A027293,
A135010,
A138137,
A176206,
A182703,
A220909,
A211992,
A221649,
A236104,
A237270,
A237271,
A237593,
A245092,
A245093,
A245095,
A245099,
A262626,
A336811,
A336812,
A338156,
A339278,
A340035,
A340583,
A340584,
A345023,
A346741.
-
nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
-
T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013
A053445
Second differences of partition numbers A000041.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 3, 1, 4, 2, 7, 3, 10, 7, 14, 11, 22, 17, 32, 28, 45, 43, 67, 63, 95, 96, 134, 139, 192, 199, 269, 287, 373, 406, 521, 566, 718, 792, 983, 1092, 1346, 1496, 1827, 2045, 2465, 2772, 3323, 3733, 4449, 5016, 5929, 6696, 7882, 8897, 10426
Offset: 0
a(8) = 7 - 4 = 3; the corresponding partitions are 44, 332 and 2222.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, 3.
- Andrew van den Hoeven, Table of n, a(n) for n = 0..9998 (terms up to a(1000) from T. D. Noe)
- Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.
- K. Banerjee, Positivity of the second shifted difference of partitions and overpartitions: a combinatorial approach, Enum. Combin. Applic. 3 (2023) # S2R12
- P. Furlan, G. M. Sotkov and I. T. Todorov, Two-Dimensional Conformal Quantum Field Theory, Rivista d. Nuovo Cimento 12, 6 (1989) 1-202.
- Cristiano Husu, The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2, arXiv:1804.09883 [math.NT], 2018.
-
m:=58; S:=[ NumberOfPartitions(n): n in [0..m] ]; [ S[n+2]-2*S[n+1]+S[n]: n in [1..m-2] ]; // Klaus Brockhaus, Jun 09 2009
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> b(n$2) -2*b(n+1$2) +b(n+2$2):
seq(a(n), n=0..80); # Alois P. Heinz, May 19 2014
# alternative Maple program:
P:= [seq(combinat:-numbpart(n),n=0..1002)]:
seq(P[i]-2*P[i+1]+P[i+2],i=1..1001); # Robert Israel, Dec 15 2014
-
Table[(PartitionsP[n+2]-PartitionsP[n+1])-(PartitionsP[n+1]-PartitionsP[n]),{n,0,42}] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
Differences[Table[ PartitionsP[n], {n, 0, 56}], 2] (* Jean-François Alcover, Sep 07 2011 *)
Differences[PartitionsP[Range[0,60]],2] (* Harvey P. Dale, Jan 29 2016 *)
-
lista(nn) = {v = vector(nn, n, numbpart(n-1)); dv = vector(#v-1, n, v[n+1] - v[n]); vector(#dv-1, n, dv[n+1] - dv[n]);} \\ Michel Marcus, Dec 15 2014
-
from sympy import npartitions
def A053445(n): return npartitions(n+2)-(npartitions(n+1)<<1)+npartitions(n) # Chai Wah Wu, Mar 30 2023
Start of sequence changed, Apr 25 2003
A338156
Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 1
Triangle begins:
[1];
[1,2], [1];
[1,3], [1,2], [1], [1];
[1,2,4], [1,3], [1,2], [1,2], [1], [1], [1];
[1,5], [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
[1],
-------
[1, 2],
[1],
-------
[1, 3],
[1, 2],
[1],
[1];
----------
[1, 2, 4],
[1, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------
[1, 5],
[1, 2, 4],
[1, 3],
[1, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|------------|---------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| | | | | |/| | |/|/| | |/ |/|/| | |/ | /|/|/| |
| L | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| K | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | | | |\| | |\|\| | |\ |\|\| | |\ |\ |\|\| |
| | A206561 | 1 | 4 2 | 9 5 3 | 20 13 7 4 | 35 23 15 9 5 |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| |---------|-----|-------|---------|------------|---------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|------------|---------------|
| D | A027750 | | | 1 | 1 2 | 1 3 |
| I | A027750 | | | 1 | 1 2 | 1 3 |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O | A027750 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructed using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5]) then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
The product of row n is
A007870(n).
Row n lists the first n rows of
A336812 (a subsequence).
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A127093,
A135010,
A138121,
A176206,
A182703,
A206437,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A245095,
A221649,
A221650,
A237593,
A302246,
A302247,
A336811,
A337209,
A339106,
A339258,
A339278,
A339304,
A340035,
A340061,
A346741.
-
A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m],PartitionsP[m]],{m,0,n-1}]],{n,rowmax}];
A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
-
A338156(rowmax)=vector(rowmax,n,concat(vector(n,m,concat(vector(numbpart(m-1),i,divisors(n-m+1))))));
A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023
A134264
Coefficients T(j, k) of a partition transform for Lagrange compositional inversion of a function or generating series in terms of the coefficients of the power series for its reciprocal. Enumeration of noncrossing partitions and primitive parking functions. T(n,k) for n >= 1 and 1 <= k <= A000041(n-1), an irregular triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 6, 1, 1, 5, 5, 10, 10, 10, 1, 1, 6, 6, 3, 15, 30, 5, 20, 30, 15, 1, 1, 7, 7, 7, 21, 42, 21, 21, 35, 105, 35, 35, 70, 21, 1, 1, 8, 8, 8, 4, 28, 56, 56, 28, 28, 56, 168, 84, 168, 14, 70, 280, 140, 56, 140, 28, 1, 1, 9, 9, 9, 9, 36, 72
Offset: 1
1) With f(t) = t / (t-1), then h(t) = -(1-t), giving h_0 = -1, h_1 = 1 and h_n = 0 for n>1. Then g(t) = -t - t^2 - t^3 - ... = t / (t-1).
2) With f(t) = t*(1-t), then h(t) = 1 / (1-t), giving h_n = 1 for all n. The compositional inverse of this f(t) is g(t) = t*A(t) where A(t) is the o.g.f. for the Catalan numbers; therefore the sum over k of T(j,k), i.e., the row sum, is the Catalan number A000108(j-1).
3) With f(t) = (e^(-a*t)-1) / (-a), h(t) = Sum_{n>=0} Bernoulli(n) * (-a*t)^n / n! and g(t) = log(1-a*t) / (-a) = Sum_{n>=1} a^(n-1) * t^n / n. Therefore with h_n = Bernoulli(n) * (-a)^n / n!, Sum_{permutations s with s(1)+s(2)+...+s(j)=j-1} h_s(1) * h_s(2) * ... * h_s(j) = j * Sum_{k=1..(# of partitions for j-1)} T(j,k) * H(j-1,k ; h_0,h_1,...) = a^(j-1). Note, in turn, Sum_{a=1..m} a^(j-1) = (Bernoulli(j,m+1) - Bernoulli(j)) / j for the Bernoulli polynomials and numbers, for j>1.
4) With f(t,x) = t / (x-1+1/(1-t)), then h(t,x) = x-1+1/(1-t), giving (h_0)=x and (h_n)=1 for n>1. Then g(t,x) = (1-(1-x)*t-sqrt(1-2*(1+x)*t+((x-1)*t)^2)) / 2, a shifted o.g.f. in t for the Narayana polynomials in x of A001263.
5) With h(t)= o.g.f. of A075834, but with A075834(1)=2 rather than 1, which is the o.g.f. for the number of connected positroids on [n] (cf. Ardila et al., p. 25), g(t) is the o.g.f. for A000522, which is the o.g.f. for the number of positroids on [n]. (Added Oct 13 2014 by author.)
6) With f(t,x) = x / ((1-t*x)*(1-(1+t)*x)), an o.g.f. for A074909, the reverse face polynomials of the simplices, h(t,x) = (1-t*x) * (1-(1+t)*x) with h_0=1, h_1=-(1+2*t), and h_2=t*(1+t), giving as the inverse in x about 0 the o.g.f. (1+(1+2*t)*x-sqrt(1+(1+2*t)*2*x+x^2)) / (2*t*(1+t)*x) for signed A033282, the reverse face polynomials of the Stasheff polytopes, or associahedra. Cf. A248727. (Added Jan 21 2015 by author.)
7) With f(x,t) = x / ((1+x)*(1+t*x)), an o.g.f. for the polynomials (-1)^n * (1 + t + ... + t^n), h(t,x) = (1+x) * (1+t*x) with h_0=1, h_1=(1+t), and h_2=t, giving as the inverse in x about 0 the o.g.f. (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2)) / (2*x*t) for the Narayana polynomials A001263. Cf. A046802. (Added Jan 24 2015 by author.)
From _Gus Wiseman_, Feb 15 2019: (Start)
Triangle begins:
1
1
1 1
1 3 1
1 4 2 6 1
1 5 5 10 10 10 1
1 6 6 3 15 30 5 20 30 15 1
1 7 7 7 21 42 21 21 35 105 35 35 70 21 1
Row 5 counts the following non-crossing set partitions:
{{1234}} {{1}{234}} {{12}{34}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{123}{4}} {{14}{23}} {{1}{23}{4}}
{{124}{3}} {{12}{3}{4}}
{{134}{2}} {{1}{24}{3}}
{{13}{2}{4}}
{{14}{2}{3}}
(End)
- A. Nica and R. Speicher (editors), Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series: 335, Cambridge University Press, 2006 (see in particular, Eqn. 9.14 on p. 141, enumerating noncrossing partitions).
- Andrew Howroyd, Table of n, a(n) for n = 1..2087 (rows 1..20)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. Alexandrov, Enumerative geometry, tau-functions, and Heisenberg-Virasoro algebra, arXiv:hep-th/1404.3402v3, 2015 (p.22).
- M. Ashelevich and W. Mlotkowski, Semigroups of distributions with linear Jacobi parameters, arxiv.org/abs/1001.1540v3 [math.CO], p. 9, 2011.
- F. Ardila, F. Rincon, and L. Williams, Positroids and non-crossing partitions, arXiv preprint arXiv:1308.2698v2 [math.CO], 2013 (p. 25).
- T. Banica, S. Belinschi, M. Capitaine, and B. Collins, Free Bessel laws, arXiv preprint arXiv:0710.5931 [math.PR], 2008.
- Freddy Cachazo and Bruno Giménez Umbert, Connecting Scalar Amplitudes using The Positive Tropical Grassmannian, arXiv:2205.02722 [hep-th], 2022.
- David Callan, Sets, Lists and Noncrossing Partitions , arXiv:0711.4841 [math.CO], 2008.
- B. Collins, I. Nechita, and K. Zyczkowski, Random graph states, maximal flow and Fuss-Catalan distributions, arXiv preprint arXiv:1003.3075 [quant-ph], 2010.
- Tom Copeland, Compositional inversion and Appell sequences, Nov 2, 2014.
- Tom Copeland, The Hirzebruch criterion for the Todd class Dec. 14, 2014.
- Tom Copeland, Appell polynomials, cumulants, noncrossing partitions, Dyck lattice paths, and inversion Dec. 23, 2014.
- Tom Copeland, Formal group laws and binomial Sheffer sequences, 2018.
- Tom Copeland, In the Realm of Shadows: Umbral inverses and associahedra, noncrossing partitions, symmetric polynomials, and similarity transforms, 2019.
- Tom Copeland, A Taste of Moonshine in Free Moments, 2022.
- R. Dickau, Non-crossing partitions, Robert Dickau's website, 2012.
- K. Ebrahimi-Fard, L. Foissy, J. Kock, and F. Patras, Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations, arXiv:1907.01190 [math.CO], 2019, p. 25.
- K. Ebrahimi-Fard and F. Patras, Cumulants, free cumulants and half-shuffles, arXiv:1409.5664v2 [math.CO], 2015, p. 12.
- K. Ebrahimi-Fard and F. Patras, The splitting process in free probability theory, arXiv:1502.02748 [math.CO], 2015, p. 3.
- Y. He and V. Jejjala, Modular Matrix Models, arXiv:hep-th/0307293, 2003.
- J. Jong, A. Hock, and R. Wulkenhaar Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv preprint arXiv:1904.11231 [math-ph], 2019.
- M. Josuat-Verges, F. Menous, J. Novelli, and J. Thibon, Noncommutative free cumulants, arxiv.org/abs/1604.04759 [math.CO], 2016.
- Germain Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 333-350 (1972).
- C. Lenart, Lagrange inversion and Schur functions, Journal of Algebraic Combinatorics, Vol. 11, Issue 1, p. 69-78, 2000, (see p. 70, Eqn. 1.2).
- M. Mastnak and A. Nica, Hopf algebras and the logarithm of the S-transform in free probability, arXiv:0807.4169v2 [math.OA], p. 28, 2008-2009.
- MathOverflow, Guises of the Noncrossing Partitions (NCPs), an MO question posed by Tom Copeland, 2019.
- MathOverflow, Combinatorial/diagrammatic models for free moment partition polynomials, an MO question posed by Tom Copeland, 2021.
- J. McCammond, Non-crossing Partitions in Surprising Locations, American Mathematical Monthly 113 (2006) 598-610.
- M. Mendez, Combinatorial differential operators in: Faà di Bruno formula, enumeration of ballot paths, enriched rooted trees and increasing rooted trees, arXiv:1610.03602 [math.CO], 2016, pp. 33-34 Example 10.
- J. Pitman and R. Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, arXiv:math/9908029 [math.CO], 1999.
- A. Rattan, Parking functions and related combinatorial structures, Master's thesis, Univ. of Waterloo, 2014.
- A. Schuetz and G. Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
- R. Simion, Noncrossing partitions, Discrete Mathematics, Vol. 217, Issues 1-3, pp. 367-409, 2000.
- R. Speicher, Lecture Notes on "Free Probability Theory", arXiv:1908.08125 [math.OA], 2019.
- R. Stanley, Parking Functions and Noncrossing Partitions, 1996.
- Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8.
- Wikipedia, Noncrossing partition
- J. Zhou, On emergent geometry of the Gromov-Witten theory of quintic Calabi-Yau threefold, arXiv:2008.03407 [math-ph], 2020.
- Index entries for sequences related to Łukasiewicz
(
A001263,
A119900) = (reduced array, associated g(x)). See
A145271 for meaning and other examples of reduced and associated.
Cf.
A119900 (e.g.f. for reduced W(x) with (h_0)=t and (h_n)=1 for n>0).
Cf.
A248927 and
A248120, "scaled" versions of this Lagrange inversion.
Cf.
A000045,
A000108,
A000957,
A001764,
A000522,
A005043,
A007317,
A033282,
A036038,
A046802,
A074909,
A075834,
A104597,
A145271,
A248727.
Cf.
A249548 for use of Appell properties to generate the polynomials.
-
Table[Binomial[Total[y],Length[y]-1]*(Length[y]-1)!/Product[Count[y,i]!,{i,Max@@y}],{n,7},{y,Sort[Sort/@IntegerPartitions[n]]}] (* Gus Wiseman, Feb 15 2019 *)
-
C(v)={my(n=vecsum(v), S=Set(v)); n!/((n-#v+1)!*prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!))}
row(n)=[C(Vec(p)) | p<-partitions(n-1)]
{ for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
Added explicit t^6, t^7, and t^8 polynomials and extended initial table to include the coefficients of t^8. -
Tom Copeland, Sep 14 2016
A129129
An irregular triangular array of natural numbers read by rows, with shape sequence A000041(n) related to sequence A060850.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 28, 25, 30, 40, 27, 36, 48, 64, 17, 26, 33, 44, 35, 42, 56, 50, 45, 60, 80, 54, 72, 96, 128, 19, 34, 39, 52, 55, 66, 88, 49, 70, 63, 84, 112, 75, 100, 90, 120, 160, 81, 108, 144, 192, 256
Offset: 0
The array is a tree structure as described by A128628. If a node value has only one branch the value is twice that of its parent node. If it has two branches one is twice that of its parent node but the other is defined as indicated below:
(1) pick an odd number (e.g., 135)
(2) calculate its prime factorization (135 = 5*3*3*3)
(3) note the least prime factor (LPF(135) = 3)
(4) note the index of the LPF (index(3) = 2)
(5) subtract one from the index (2-1 = 1)
(6) calculate the prime associated with the value in step five (prime(1) = 2)
(7) The parent node of the odd number 135 is (2/3)*135 = 90 = A252461(135).
From _Daniel Forgues_, Aug 07 2018: (Start)
Partitions of 4 in graded reverse lexicographic order:
{4}: p_4 = 7;
{3,1}: p_3 * p_1 = 5 * 2 = 10;
{2,2}: p_2 * p_2 = 3^2 = 9;
{2,1,1}: p_2 * p_1 * p_1 = 3 * 2^2 = 12;
{1,1,1,1}: p_1 * p_1 * p_1 * p_1 = 2^4 = 16. (End)
From _Gus Wiseman_, May 19 2020: (Start)
The sequence together with the corresponding partitions begins:
1: () 24: (2,1,1,1) 35: (4,3)
2: (1) 32: (1,1,1,1,1) 42: (4,2,1)
3: (2) 13: (6) 56: (4,1,1,1)
4: (1,1) 22: (5,1) 50: (3,3,1)
5: (3) 21: (4,2) 45: (3,2,2)
6: (2,1) 28: (4,1,1) 60: (3,2,1,1)
8: (1,1,1) 25: (3,3) 80: (3,1,1,1,1)
7: (4) 30: (3,2,1) 54: (2,2,2,1)
10: (3,1) 40: (3,1,1,1) 72: (2,2,1,1,1)
9: (2,2) 27: (2,2,2) 96: (2,1,1,1,1,1)
12: (2,1,1) 36: (2,2,1,1) 128: (1,1,1,1,1,1,1)
16: (1,1,1,1) 48: (2,1,1,1,1) 19: (8)
11: (5) 64: (1,1,1,1,1,1) 34: (7,1)
14: (4,1) 17: (7) 39: (6,2)
15: (3,2) 26: (6,1) 52: (6,1,1)
20: (3,1,1) 33: (5,2) 55: (5,3)
18: (2,2,1) 44: (5,1,1) 66: (5,2,1)
(End)
Compositions under the same order are
A066099.
The opposite version (sum/lex) is
A334434.
The length-sensitive version (sum/length/revlex) is
A334438.
The version for reversed (weakly increasing) partitions is
A334436.
Lexicographically ordered reversed partitions are
A026791.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are
A036036.
Sorting reversed partitions by Heinz number gives
A112798.
Partitions in lexicographic order are
A193073.
Sorting partitions by Heinz number gives
A296150.
-
b:= (n, i)-> `if`(n=0 or i=1, [2^n], [map(x-> x*ithprime(i),
b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> b(n$2)[]:
seq(T(n), n=0..10); # Alois P. Heinz, Feb 14 2020
-
Array[Times @@ # & /@ Prime@ IntegerPartitions@ # &, 9, 0] // Flatten (* Michael De Vlieger, Aug 07 2018 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {2^n}, Join[(# Prime[i]&) /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
T[n_] := b[n, n];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
A194447
Rank of the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
Original entry on oeis.org
0, 0, 0, 1, -1, 2, -2, 1, 2, 2, -5, 2, 3, 3, -8, 1, 2, 2, 2, 4, 3, -14, 2, 3, 3, 3, 2, 4, 4, -21, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -32, 2, 3, 3, 3, 2, 4, 4, 1, 4, 3, 5, 6, 5, -45, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -2, 2, 4, 4, 5, 3, 6, 6, 5, -65
Offset: 1
In the triangle T(j,k) for j = 6 the number of regions in the last section of the set of partitions of 6 is equal to 4. The first region given by [2] has rank 2-1 = 1. The second region given by [4,2] has rank 4-2 = 2. The third region given by [3] has rank 3-1 = 2. The fourth region given by [6,3,2,2,1,1,1,1,1,1,1] has rank 6-11 = -5 (see below):
From _Omar E. Pol_, Aug 12 2013: (Start)
---------------------------------------------------------
. Regions Illustration of ranks of the regions
---------------------------------------------------------
. For J=6 k=1 k=2 k=3 k=4
. _ _ _ _ _ _ _ _ _ _ _ _
. |_ _ _ | _ _ _ . |
. |_ _ _|_ | _ _ _ _ * * .| . |
. |_ _ | | _ _ * * . | . |
. |_ _|_ _|_ | * .| .| . |
. | | . |
. | | .|
. | | *|
. | | *|
. | | *|
. | | *|
. |_| *|
.
So row 6 lists: 1 2 2 -5
(End)
Written as a triangle begins:
0;
0;
0;
1,-1;
2,-2;
1,2,2,-5;
2,3,3,-8;
1,2,2,2,4,3,-14;
2,3,3,3,2,4,4,-21;
1,2,2,2,4,3,1,3,5,5,4,-32;
2,3,3,3,2,4,4,1,4,3,5,6,5,-45;
1,2,2,2,4,3,1,3,5,5,4,-2,2,4,4,5,3,6,6,5,-65;
2,3,3,3,2,4,4,1,4,3,5,6,5,-3,3,5,5,4,5,4,7,7,6,-88;
Row j has length
A187219(j). The absolute value of the last term of row j is
A000094(j+1). Row sums give
A000004.
Cf.
A000041,
A002865,
A135010,
A138121,
A138137,
A138879,
A186114,
A186412,
A193870,
A194436,
A194437,
A194438,
A194439,
A194446,
A206437.
A040051
Parity of partition function A000041.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1
Offset: 0
- H. Gupta, A note on the parity of p(n), J. Indian Math. Soc. (N.S.) 10, (1946). 32-33. MR0020588 (8,566g)
- K. M. Majumdar, On the parity of the partition function p(n), J. Indian Math. Soc. (N.S.) 13, (1949). 23-24. MR0030553 (11,13d)
- M. V. Subbarao, A note on the parity of p(n), Indian J. Math. 14 (1972), 147-148. MR0357355 (50 #9823)
- T. D. Noe, Table of n, a(n) for n = 0..1000
- R. Blecksmith; J. Brillhart; I. Gerst, Parity results for certain partition functions and identities similar to theta function identities, Math. Comp. 48 (1987), no. 177, 29-38. MR0866096 (87k:11113).
- Nicholas Eriksson, q-series, elliptic curves and odd values of the partition function, Int. J. Math. Math. Sci. 22 (1999), 55-65; MR 2001a:11175.
- M. D. Hirschhorn, On the residue mod 2 and mod 4 of p(n), Acta Arith. 38 (1980/81), no. 2, 105-109. MR0604226 (82d:10025)
- M. D. Hirschhorn, On the parity of p(n), II, J. Combin. Theory Ser. A 62 (1993), no. 1, 128-138.
- M. D. Hirschhorn and M. V. Subbarao, On the parity of p(n), Acta Arith. 50 (1988), no. 4, 355-356.
- O. Kolberg, Note on the parity of the partition function, Math. Scand. 7 1959 377-378. MR0117213 (22 #7995).
- P. A. MacMahon, The parity of p(n), the number of partitions of n, when n <= 1000, J. London Math. Soc., 1 (1926), 225-226.
- Mircea Merca, New recurrences for Euler's partition function, Turkish J. Math. 41:5 (2017), pp. 1184-1190.
- M. Newman, Periodicity modulo m and divisibility properties of the partition function, Trans. Amer. Math. Soc. 97 (1960), 225-236. MR0115981 (22 #6778)
- M. Newman, Congruences for the partition function to composite moduli, Illinois J. Math. 6 1962 59-63. MR0140472 (25 #3892)
- K. Ono, Parity of the partition function, Electron. Res. Announc. AMS, Vol. 1, 1995, pp. 35-42; MR 96d:11108.
- Ivars Peterson, Ken Ono's and Nicholas Eriksson's work
-
import Data.Bits (xor)
a040051 n = p 1 n :: Int where
p _ 0 = 1
p k m | k <= m = p k (m - k) `xor` p (k+1) m | k > m = 0
-- Reinhard Zumkeller, Nov 15 2011
-
Table[ Mod[ PartitionsP@ n, 2], {n, 105}] (* Robert G. Wilson v, Mar 25 2011 *)
-
a(n)=if(n<0, 0, numbpart(n)%2)
-
a(n)=if(n<0, 0, polcoeff(1/eta(x+x*O(x^n)), n)%2)
-
a(n)=if(n<10^9, return(numbpart(n)%2)); my(r=n%4, u=select(k->k^2%32==8*r+1,[1..31]), st=u[1], m=n\4, s); u=[u[2]-u[1],u[3]-u[2],u[4]-u[3],u[1]+32-u[4]]; forstep(t=[1,3,7,5][r+1], sqrtint(32*m-1), u, k=t^2>>5; if(a(m-k), s++)); s%2 \\ Merca's algorithm, switching to direct computation for n less than 10^9. Very time-consuming but low memory use. - Charles R Greathouse IV, Jan 24 2018
-
from sympy import npartitions
def a(n): return npartitions(n)%2 # Indranil Ghosh, May 25 2017
A175804
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the n-th term of the k-th differences of partition numbers A000041.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, -1, 0, 1, 3, 2, 1, 1, 2, 5, -4, -2, -1, 0, 2, 7, 9, 5, 3, 2, 2, 4, 11, -21, -12, -7, -4, -2, 0, 4, 15, 49, 28, 16, 9, 5, 3, 3, 7, 22, -112, -63, -35, -19, -10, -5, -2, 1, 8, 30, 249, 137, 74, 39, 20, 10, 5, 3, 4, 12, 42, -539, -290, -153, -79, -40, -20, -10, -5, -2, 2, 14, 56
Offset: 0
Square array A(n,k) begins:
1, 0, 1, -1, 2, -4, 9, ...
1, 1, 0, 1, -2, 5, -12, ...
2, 1, 1, -1, 3, -7, 16, ...
3, 2, 0, 2, -4, 9, -19, ...
5, 2, 2, -2, 5, -10, 20, ...
7, 4, 0, 3, -5, 10, -20, ...
11, 4, 3, -2, 5, -10, 22, ...
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.
- Charles Knessl, Asymptotic Behavior of High-Order Differences of the Partition Function, Communications on Pure and Applied Mathematics, 44 (1991), 1033-1045.
- A. M. Odlyzko, Differences of the partition function, Acta Arith., 49 (1988), 237-254.
Row n = 1 is
A320590 except first term.
For squarefree numbers we have
A377038.
For nonsquarefree numbers we have
A377046.
-
A41:= combinat[numbpart]:
DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end:
A:= (n,k)-> (DD@@k)(A41)(n):
seq(seq(A(n, d-n), n=0..d), d=0..11);
-
max = 11; a41 = Array[PartitionsP, max+1, 0]; a[n_, k_] := Differences[a41, k][[n+1]]; Table[a[n, k-n], {k, 0, max}, {n, 0, k}] // Flatten (* Jean-François Alcover, Aug 29 2014 *)
nn=5;Table[Table[Sum[(-1)^(k-i)*Binomial[k,i]*PartitionsP[n+i],{i,0,k}],{k,0,nn}],{n,0,nn}] (* Gus Wiseman, Dec 15 2024 *)
A186412
Sum of all parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
Original entry on oeis.org
1, 3, 5, 2, 9, 3, 12, 2, 6, 3, 20, 3, 7, 4, 25, 2, 6, 3, 13, 5, 4, 38, 3, 7, 4, 14, 3, 9, 5, 49, 2, 6, 3, 13, 5, 4, 23, 4, 10, 6, 5, 69, 3, 7, 4, 14, 3, 9, 5, 27, 5, 4, 15, 7, 6, 87, 2, 6, 3, 13, 5, 4, 23, 4, 10, 6, 5, 39, 3, 9, 5, 19, 4, 12, 7, 6, 123
Offset: 1
Contribution from Omar E. Pol, Nov 26 2011 (Start):
Written as a triangle:
1;
3;
5;
2,9;
3,12;
2,6,3,20;
3,7,4,25;
2,6,3,13,5,4,38;
3,7,4,14,3,9,5,49;
2,6,3,13,5,4,23,4,10,6,5,69;
3,7,4,14,3,9,5,27,5,4,15,7,6,87;
2,6,3,13,5,4,23,4,10,6,5,39,3,9,5,19,4,12,7,6,123;
(End)
From _Omar E. Pol_, Aug 18 2013: (Start)
Illustration of initial terms (first seven regions):
. _ _ _ _ _
. _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _| |_ _|
. _ _ |_ _ _ _| |_|
. _ _ _ |_ _| |_ _| |_|
. _ _ |_ _ _| |_| |_|
. _ |_ _| |_| |_| |_|
. |_| |_| |_| |_| |_|
.
. 1 3 5 2 9 3 12
.
(End)
Right border gives
A046746, j >= 1.
Cf.
A000041,
A002865,
A066186,
A135010,
A138121,
A138879,
A194436,
A194437,
A194438,
A194439,
A194446,
A194447.
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
A186412 = {}; l = {};
For[j = 1, j <= 50, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];
];
A186412 (* Robert Price, Jul 25 2020 *)
Comments