cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A051102 Floor of exp(n-th prime).

Original entry on oeis.org

7, 20, 148, 1096, 59874, 442413, 24154952, 178482300, 9744803446, 3931334297144, 29048849665247, 11719142372802611, 639843493530054949, 4727839468229346561, 258131288619006739623, 104137594330290877971834, 42012104037905142549565934, 310429793570191990870734214
Offset: 1

Views

Author

Joel Patrick Hollins (s1161557(AT)cedarville.edu)

Keywords

Examples

			e = 2.718281828..., e^5 = 148.4131591..., floor( e^5 ) = 148.
		

References

  • Kumanduri and Romero, "Number Theory", Upper Saddle River, NJ, 1998.

Crossrefs

Programs

  • Mathematica
    Floor[Exp[#]]&/@Prime[Range[20]] (* Harvey P. Dale, Dec 12 2012 *)
  • Python
    from sympy import floor, E, prime
    def a(n):  return floor(E**prime(n))
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Jul 20 2021

Formula

a(n) = A000149(A000040(n)). - Alois P. Heinz, Apr 09 2020

A055739 [e^n]-th prime.

Original entry on oeis.org

2, 3, 17, 71, 251, 857, 2767, 8803, 27211, 82939, 249779, 744949, 2201273, 6463081, 18858529, 54764947, 158330573, 456016933, 1309050653, 3746543923, 10694444393, 30453898201, 86534078387, 245401348403, 694683409429, 1963275871663, 5540095680547, 15611517864749
Offset: 0

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[Floor[N[E^n]]],{n,0,25}] (* Typographical error corrected by Harvey P. Dale, Dec 27 2019 *)

Formula

a(n) = prime(A000149(n)). - Amiram Eldar, Jul 22 2025

Extensions

a(25)-a(27) from Amiram Eldar, Jul 22 2025

A248873 a(n) = floor(e^(n+1) - e^n).

Original entry on oeis.org

1, 4, 12, 34, 93, 255, 693, 1884, 5122, 13923, 37847, 102880, 279658, 760190, 2066413, 5617093, 15268842, 41505016, 112822331, 306682894, 833650539, 2266097111, 6159890600, 16744318683, 45515777207, 123724710091, 336318631172, 914208823689, 2485077232852, 6755140284380
Offset: 0

Views

Author

Danny Rorabaugh, Mar 04 2015

Keywords

Comments

e^(n+1)-e^n-1 < a(n) <= A064780(n) <= a(n)+1 < e^(n+1)-e^n+1.
Lim_{n->infinity} a(n)/e^(n+1) = (e-1)/e. [Corrected by Altug Alkan, Apr 25 2018]

Crossrefs

Programs

  • Mathematica
    Floor[#[[2]]-#[[1]]]&/@Partition[E^Range[0,30],2,1] (* Harvey P. Dale, Jul 24 2018 *)
  • PARI
    vector(30, n, n--; floor(exp(n+1)-exp(n))) \\ Michel Marcus, Mar 06 2015

Formula

a(n) = floor(e^(n+1)-e^n).

A309087 a(n) = Sum_{k >= 0} floor(n^k / k!).

Original entry on oeis.org

1, 2, 6, 18, 50, 143, 397, 1088, 2973, 8093, 22014, 59861, 162742, 442396, 1202589, 3268996, 8886090, 24154933, 65659949, 178482278, 485165168, 1318815708, 3584912818, 9744803414, 26489122097, 72004899306, 195729609397, 532048240570, 1446257064252
Offset: 0

Views

Author

Rémy Sigrist, Jul 11 2019

Keywords

Comments

This sequence is inspired by the Maclaurin series for the exponential function.
The series in the name is well defined; for any n > 0, only the first A065027(n) terms are different from zero.

Examples

			For n = 3:
- we have:
  k  floor(3^k / k!)
  -  ---------------
  0                1
  1                3
  2                4
  3                4
  4                3
  5                2
  6                1
  >=7              0
- hence a(3) = 1 + 3 + 4 + 4 + 3 + 2 + 1 = 18.
		

Crossrefs

See A309103, A309104, A309105 for similar sequences.

Programs

  • PARI
    a(n) = { my (v=0, d=1); for (k=1, oo, if (d<1, return (v), v += floor(d); d *= n/k)) }

Formula

a(n) ~ exp(n) as n tends to infinity.
a(n) <= A000149(n).
a(n) = A309104(n) + A309105(n).

A003619 Not of form [ e^m ], m >= 1.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53
Offset: 1

Views

Author

Keywords

Comments

If 1 is excluded (of form [e^0]) then complement of A000149. - Michel Marcus, Jun 16 2013

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000195.

Programs

  • Haskell
    a003619 n = n + floor (log (x + fromIntegral (floor $ log x)))
                where x = fromIntegral n + 1
    -- Reinhard Zumkeller, Mar 17 2015
  • Mathematica
    Table[n + Floor@ Log[n + 1 + Floor@ Log[n + 1]], {n, 50}] (* Michael De Vlieger, Oct 06 2017 *)
  • PARI
    a(n) = n + floor( log (n + 1 + floor( log (n + 1) )) ) \\ Michel Marcus, Jun 16 2013
    

Formula

a(n) = n + [ log (n + 1 + [ log (n + 1) ]) ].

A061293 a(n) = floor( n^e ), e = 2.718281828...

Original entry on oeis.org

1, 6, 19, 43, 79, 130, 198, 285, 392, 522, 677, 858, 1066, 1304, 1573, 1875, 2211, 2583, 2992, 3440, 3927, 4457, 5029, 5646, 6309, 7019, 7777, 8585, 9445, 10356, 11322, 12343, 13419, 14554, 15747, 17000, 18315, 19692, 21133, 22638, 24210
Offset: 1

Views

Author

Amarnath Murthy, Apr 26 2001

Keywords

Comments

A000290(n) <= a(n) <= A000578(n). - Reinhard Zumkeller, Mar 17 2015

Examples

			a(5) = floor(5^e) = floor(79.4323591662132397382254690058565...) = 79.
		

Crossrefs

Programs

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), May 19 2001

A062277 a(n) = floor(e^n / n^e).

Original entry on oeis.org

2, 1, 1, 1, 1, 3, 5, 10, 20, 42, 88, 189, 414, 921, 2077, 4737, 10921, 25416, 59646, 141033, 335752, 804258, 1937372, 4690989, 11412140, 27884328, 68407056, 168446547, 416226830, 1031816793, 2565591729, 6397371713, 15994440540
Offset: 1

Views

Author

Henry Bottomley, Jul 02 2001

Keywords

Comments

e is the only positive real k for which k^n is greater than or equal to n^k for all positive real n.

Examples

			a(1) = floor(e^1 / 1^e) = floor(e) = 2.
		

Crossrefs

Programs

  • Mathematica
    Array[Floor[E^#/#^E] &, 33] (* Michael De Vlieger, Jul 01 2018 *)
  • PARI
    { default(realprecision, 100); e=exp(1); for (n=1, 200, write("b062277.txt", n, " ", floor(e^n / n^e)) ) } \\ Harry J. Smith, Aug 03 2009

A085421 a(0)=2, a(1)=1, a(n+2)=floor[(e-1/e)*a(n+1)+a(n-2)].

Original entry on oeis.org

2, 1, 4, 10, 27, 73, 198, 538, 1462, 3974, 10802, 29363, 79816, 216962, 589764, 1603144, 4357797, 11845720, 32200005, 87528688, 237927642, 646754385, 1758060692, 4778904432, 12990409077, 35311592938, 95986861417
Offset: 0

Views

Author

Gary W. Adamson, Jun 29 2003

Keywords

Comments

a(n+1)/a(n) converges to e.
For n>0, floor[log a(n)] = n-1.
This resembles a Lucas sequence.

Crossrefs

Extensions

Edited by Don Reble, Nov 14 2005

A105461 The floor(exp(n))-th irregular prime.

Original entry on oeis.org

37, 59, 149, 389, 809, 2543, 8089, 25301, 76493, 232439, 695407, 2040551, 5993249, 17532407, 50970511, 147468721, 424835869, 1219642051
Offset: 1

Views

Author

Robert G. Wilson v, Apr 07 2005

Keywords

Crossrefs

Programs

  • Mathematica
    ip={ the list of irregular primes to 12 million }; Table[ ip[[ Floor[E^n]]], {n, 0, 12}]

Formula

a(n) = A000928(A000149(n)). - Amiram Eldar, Mar 05 2019

Extensions

a(13) corrected and a(14)-a(18) added by Amiram Eldar, Mar 05 2019

A116472 a(n) = floor(exp(2*n)).

Original entry on oeis.org

1, 7, 54, 403, 2980, 22026, 162754, 1202604, 8886110, 65659969, 485165195, 3584912846, 26489122129, 195729609428, 1446257064291, 10686474581524, 78962960182680, 583461742527454, 4311231547115195, 31855931757113756, 235385266837019985, 1739274941520501047
Offset: 0

Views

Author

Milton L. Brown (miltbrown(AT)earthlink.net), Jan 20 2008

Keywords

Comments

A bisection of A000149, which is the main entry for this sequence.
a(n) = A000149(2*n).

Crossrefs

Cf. A000149.

Programs

Extensions

More terms from Harvey P. Dale, Aug 22 2011
Previous Showing 21-30 of 43 results. Next