cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A006384 Number of sensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 57, 312, 2071, 15030, 117735, 967850, 8268816, 72833730, 658049140, 6074058060, 57106433817, 545532037612, 5284835906037, 51833908183164, 514019531037910, 5147924676612282, 52017438279806634, 529867070532745464
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
  • V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A379430.
Cf. A000168 (rooted), A006385 (unsensed), A006443 (achiral), A006402 (2-connected).

Programs

  • Maple
    with(numtheory): a:= n-> `if` (n=0, 1, floor (2*3^n /(n+1)/(n+2) *binomial(2*n, n) +add (phi(n/t) *3^t *binomial(2*t, t), t=divisors(n) minus {n}))/2/n +`if` (irem(n,2)=1, 2*3^((n-1)/2) /(n+1) *binomial(n-1, (n-1)/2), 2*(n-1) *3^((n-2)/2) /n/(n+2) *binomial(n-2, (n-2)/2))): seq (a(n), n=0..30); # Alois P. Heinz, Apr 24 2009
  • Mathematica
    a[0] = 1; a[n_] := (1/(2n))*(2*(3^n/((n+1)*(n+2)))*Binomial[2n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[n]]}]) + q[n]; q[n_?OddQ] := 2*(3^((n-1)/2)/(n+1))*Binomial[ n-1, (n-1)/2]; q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n-2, (n-2)/2]; Table[ a[n], {n, 0, 21}] (* Jean-François Alcover, after Valery A. Liskovets *)

Formula

For n>0, a(n) = (1/2n)[A'(n)+sum_{kA000010, q(n)=(n+3) A'(n-1/2)/4 if n is odd and q(n) = (n-1)A'(n-2/2)/4 if n is even, where A'(n)=A000168(n), the number of rooted maps. - Valery A. Liskovets, May 27 2006
Equivalently, a(n) = (1/2n)[2*3^n/((n+1)(n+2))*binomial(2n,n) +sum_{kValery A. Liskovets, May 27 2006
a(n) ~ 12^n / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Alois P. Heinz, Apr 24 2009

A073267 Number of compositions (ordered partitions) of n into exactly two powers of 2.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Starting with 1 = self-convolution of A036987, the characteristic function of the powers of 2. [Gary W. Adamson, Feb 23 2010]

Examples

			For 2 there is only composition {1+1}, for 3 there is {1+2, 2+1}, for 4 {2+2}, for 5 {1+4, 4+1}, for 6 {2+4,4+2}, for 7 none, thus a(2)=1, a(3)=2, a(4)=1, a(5)=2, a(6)=2 and a(7)=0.
		

Crossrefs

The second row of the table A073265. The essentially same sequence 1, 1, 2, 1, 2, 2, 0, 1, ... occurs for first time in A073202 as row 105 (the fix count sequence of A073290). The positions of 1's for n > 1 is given by the characteristic function of A000079, i.e. A036987 with offset 1 instead of 0 and the positions of 2's is given by A018900. Cf. also A023359.
Cf. A036987. [Gary W. Adamson, Feb 23 2010]

Programs

  • Haskell
    a073267 n = sum $ zipWith (*) a209229_list $ reverse $ take n a036987_list
    -- Reinhard Zumkeller, Mar 07 2012
    
  • Maple
    f:= proc(n) local d;
    d:= convert(convert(n,base,2),`+`);
    if d=2 then 2 elif d=1 then 1 else 0 fi
    end proc:
    0, 0, seq(f(n),n=2..100); # Robert Israel, Jul 07 2016
  • Mathematica
    Table[Count[Map[{#, n - #} &, Range[0, n]], k_ /; Times @@ Boole@ Map[IntegerQ@ Log2@ # &, k] == 1], {n, 0, 88}] (* Michael De Vlieger, Jul 08 2016 *)
  • PARI
    N=166; x='x+O('x^N);
    v=Vec( 'a0 + sum(k=0,ceil(log(N)/log(2)), x^(2^k) )^2 );
    v[1] -= 'a0;  v
    /* Joerg Arndt, Oct 21 2012 */
    
  • Python
    def A073267(n): return m if n>1 and (m:=n.bit_count())<3 else 0 # Chai Wah Wu, Oct 30 2024

Formula

G.f.: (Sum_{k>=0} x^(2^k) )^2. - Vladeta Jovovic, Mar 28 2005
a(n+1) = A000108(n) mod 4, n>=1 [Theorem 2.3 of Eu et al.]. - R. J. Mathar, Feb 27 2008
a(n) = sum (A209229(k)*A036987(n-k): k = 0..n), convolution of characteristic functions of 2^n and 2^n-1. [Reinhard Zumkeller, Mar 07 2012]
a(n+2) = A000168(n) mod 4. - John M. Campbell, Jul 07 2016

A269919 Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g.

Original entry on oeis.org

1, 2, 9, 1, 54, 20, 378, 307, 21, 2916, 4280, 966, 24057, 56914, 27954, 1485, 208494, 736568, 650076, 113256, 1876446, 9370183, 13271982, 5008230, 225225, 17399772, 117822512, 248371380, 167808024, 24635754, 165297834, 1469283166, 4366441128
Offset: 0

Views

Author

Gheorghe Coserea, Mar 07 2016

Keywords

Comments

Row n contains floor((n+2)/2) terms.
Equivalently, T(n,g) is the number of rooted bipartite quadrangulations with n faces of an orientable surface of genus g.

Examples

			Triangle starts:
n\g    [0]          [1]          [2]          [3]          [4]
[0]    1;
[1]    2;
[2]    9,           1;
[3]    54,          20;
[4]    378,         307,         21;
[5]    2916,        4280,        966;
[6]    24057,       56914,       27954,       1485;
[7]    208494,      736568,      650076,      113256;
[8]    1876446,     9370183,     13271982,    5008230,     225225;
[9]    17399772,    117822512,   248371380,   167808024,   24635754;
[10]   ...
		

Crossrefs

Same as A238396 except for the zeros.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g<0 || g>n/2 = 0; T[n_, g_] := T[n, g] = ((4n-2)/ 3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n-k)- 1) T[k-1, i] T[n-k-1, g-i], {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n/2}] // Flatten (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    N = 9; gmax(n) = n\2;
    Q = matrix(N+1, N+1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, N, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric();
    concat(vector(N+1, n, vector(1 + gmax(n-1), g, Qget(n-1, g-1))))

Formula

(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.

A006301 Number of rooted genus-2 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 21, 966, 27954, 650076, 13271982, 248371380, 4366441128, 73231116024, 1183803697278, 18579191525700, 284601154513452, 4272100949982600, 63034617139799916, 916440476048146056, 13154166812674577412, 186700695099591735024, 2623742783421329300190, 36548087103760045010148, 505099724454854883618924
Offset: 0

Views

Author

Keywords

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column k=2 of A238396.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, this sequence, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A006301_ser(N) = {
      my(y=A005159_ser(N+1));
      -y*(y-1)^4*(4*y^4 - 16*y^3 + 153*y^2 - 148*y + 196)/(9*(y-2)^7*(y+2)^4);
    };
    concat([0,0,0,0], Vec(A006301_ser(19))) \\ Gheorghe Coserea, Jun 02 2017

Extensions

More terms from Joerg Arndt, Feb 26 2014

A104742 Number of rooted maps of (orientable) genus 3 containing n edges.

Original entry on oeis.org

1485, 113256, 5008230, 167808024, 4721384790, 117593590752, 2675326679856, 56740864304592, 1137757854901806, 21789659909226960, 401602392805341924, 7165100439281414160, 124314235272290304540, 2105172926498512761984, 34899691847703927826500, 567797719808735191344672, 9084445205688065541367710
Offset: 6

Views

Author

Valery A. Liskovets, Mar 22 2005

Keywords

Crossrefs

Column k=3 of A238396.
Cf. A104596 (unrooted maps).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, this sequence, A215402, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 3];
    Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A104742_ser(N) = {
      my(y=A005159_ser(N+1));
      y*(y-1)^6*(460*y^8 - 3680*y^7 + 63055*y^6 - 198110*y^5 + 835954*y^4 - 1408808*y^3 + 1986832*y^2 - 1462400*y + 547552)/(81*(y-2)^12*(y+2)^7)
    };
    Vec(A104742_ser(17))  \\ Gheorghe Coserea, Jun 02 2017

A215402 Number of rooted maps of (orientable) genus 4 containing n edges.

Original entry on oeis.org

225225, 24635754, 1495900107, 66519597474, 2416610807964, 75981252764664, 2141204115631518, 55352670009315660, 1334226671709010578, 30347730709395639732, 657304672067357799042, 13652607304062788395788, 273469313030628783700080, 5306599156694095573465824, 100128328831437989131706976, 1842794650155970906232185656
Offset: 8

Views

Author

Alain Giorgetti, Aug 09 2012

Keywords

Crossrefs

Row sums of A269924.
Column g=4 of A269919.
Cf. A215019 (unrooted sensed maps), A297880 (unrooted unsensed maps).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, this sequence, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 4];
    Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A215402_ser(N) = {
      my(y=A005159_ser(N+1));
      -y*(y-1)^8*(15812*y^12 - 189744*y^11 + 4708549*y^10 - 24892936*y^9 + 173908449*y^8 - 567987942*y^7 + 1743939189*y^6 - 3485359548*y^5 + 5448471852*y^4 - 6051484928*y^3 + 4633500336*y^2 - 2228416192*y + 517976128)/(81*(y-2)^17*(y+2)^10);
    };
    Vec(A215402_ser(16)) \\ Gheorghe Coserea, Jun 02 2017

Extensions

More terms from Joerg Arndt, Feb 26 2014

A238355 Number of rooted maps of genus 5 containing n edges.

Original entry on oeis.org

59520825, 8608033980, 672868675017, 37680386599440, 1692352190653740, 64755027944420400, 2190839204960030106, 67194704604610557072, 1901727022434216910002, 50322107898515282999256, 1257582616997225194094310, 29916524874047762719113408, 681758763997451748190036272, 14960113428664295584816860864
Offset: 10

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Row sums of A269925.
Column g=5 of A269919.
Cf. A239918 (unrooted sensed), A348798 (unrooted unsensed)
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, this sequence, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 5];
    Table[a[n], {n, 10, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396
    
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A238355_ser(N) = {
      my(y=A005159_ser(N+1));
      y*(y-1)^10*(3149956*y^16 - 50399296*y^15 + 1641189689*y^14 - 12178227918*y^13 + 118643174857*y^12 - 572499071300*y^11 + 2690451915197*y^10 - 8657342508522*y^9 + 23652302179098*y^8 - 49891059998872*y^7 + 84432024838000*y^6 - 112355956173344*y^5 + 115338024848256*y^4 - 88846084908160*y^3 + 48488699816960*y^2 - 16837415717888*y + 2841312026112)/(243*(y-2)^22*(y+2)^13);
    };
    Vec(A238355_ser(14)) \\ Gheorghe Coserea, Jun 02 2017

A238356 Number of rooted maps of genus 6 containing n edges.

Original entry on oeis.org

24325703325, 4416286056750, 425671555397220, 28948474436455224, 1558252224413413380, 70639804918689629112, 2802850363447807024080, 99911395098598706576856, 3259947795252652107008514, 98729808377337068918681196, 2805432194025270702468165744
Offset: 12

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=6 of A269919.
Cf. A239919 (unrooted sensed), A348798 (unrooted unsensed).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, this sequence, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 6];
    Table[a[n], {n, 12, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396
    
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A238356_ser(N) = {
      my(y=A005159_ser(N+1));
      -y*(y-1)^12*(3091382412*y^20 - 61827648240*y^19 + 2494741456179*y^18 - 23821030780564*y^17 + 297709107215018*y^16 - 1898397937026724*y^15 + 11996625283021532*y^14 - 53079600835119544*y^13 + 206468965657569764*y^12 - 637634273350412392*y^11 + 1660605297373850222*y^10 - 3573247507645221112*y^9 + 6390852378647917144*y^8 - 9449999309170921856*y^7 + 11435897504002339264*y^6 - 11175919884930946304*y^5 + 8621441033651120896*y^4 - 5068129528843341824*y^3 + 2141653827725309440*y^2 - 581932716954417152*y + 76958488611567616)/(2187*(y-2)^27*(y+2)^16);
    };
    Vec(A238356_ser(11)) \\ Gheorghe Coserea, Jun 02 2017

A238357 Number of genus-7 rooted maps with n edges.

Original entry on oeis.org

14230536445125, 3128879373858000, 360626952084151500, 29001816720933903504, 1828003659229082834100, 96187365300257285300064, 4395215998078319892167640, 179153431308203084149883760, 6641365771586560905099092466, 227189907562197156785567456832, 7252879937219595844346639732688
Offset: 14

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=7 of A269919.
Cf. A239921 (unrooted sensed), A348800 (unrooted unsensed).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, this sequence, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 7];
    Table[a[n], {n, 14, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396
    
  • PARI
    system("wget http://oeis.org/A238357/a238357.txt");
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A238357_ser(N) = subst(read("a238357.txt"), 'y, A005159_ser(N+14));
    Vec(A238357_ser(11)) \\ Gheorghe Coserea, Jun 03 2017

A238358 Number of genus-8 rooted maps with n edges.

Original entry on oeis.org

11288163762500625, 2927974178219879250, 394372363395179602125, 36751560969705187643982, 2663973075006196131775590, 160098273686603663417293308, 8303278159618015743881266599, 381958851175370643701603049354, 15896435050196091382215375181044, 607566907750822335161584110201960
Offset: 16

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=8 of A269919.
Cf. A239922 (unrooted sensed), A348801 (unrooted unsensed).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, this sequence, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 8];
    Table[a[n], {n, 16, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396
Previous Showing 11-20 of 41 results. Next