cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 5459 results. Next

A340793 Sequence whose partial sums give A000203.

Original entry on oeis.org

1, 2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2021

Keywords

Comments

Essentially a duplicate of A053222.
Convolved with the nonzero terms of A000217 gives A175254, the volume of the stepped pyramid described in A245092.
Convolved with the nonzero terms of A046092 gives A244050, the volume of the stepped pyramid described in A244050.
Convolved with A000027 gives A024916.
Convolved with A000041 gives A138879.
Convolved with A000070 gives the nonzero terms of A066186.
Convolved with the nonzero terms of A002088 gives A086733.
Convolved with A014153 gives A182738.
Convolved with A024916 gives A000385.
Convolved with A036469 gives the nonzero terms of A277029.
Convolved with A091360 gives A276432.
Convolved with A143128 gives the nonzero terms of A000441.
For the correspondence between divisors and partitions see A336811.

Crossrefs

Programs

  • Maple
    a:= n-> (s-> s(n)-s(n-1))(numtheory[sigma]):
    seq(a(n), n=1..77);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Join[{1}, Differences @ Table[DivisorSigma[1, n], {n, 1, 100}]] (* Amiram Eldar, Jan 21 2021 *)
  • PARI
    a(n) = if (n==1, 1, sigma(n)-sigma(n-1)); \\ Michel Marcus, Jan 22 2021

Formula

a(n) = A053222(n-1) for n>1. - Michel Marcus, Jan 22 2021

A362451 Gilbreath transform of {sigma(i), i >= 1} (cf. A000203).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 0, 0, 1, 0, 4, 0, 3, 0, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 68, 0, 14, 0, 7, 0, 2, 0, 21, 1, 8, 1, 9, 1, 0, 1, 18, 0, 7, 0, 2, 0, 1, 0, 13, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 03 2023

Keywords

Comments

Given a sequence {u(i), i >= o} with offset o, its absolute difference sequence is the sequence {v(i) = |u(i+1)-u(i)|, i >= o}.
The Gilbreath transform of a sequence s = {s(i), i >= o} is constructed as follows.
Form an array A in which the initial row is s and each subsequence row is the absolute difference sequence of the previous row. The sequence of leading terms of the rows of A is the Gilbreath transform of s.
If "absolute difference sequence" is changed to the familiar "first differences", instead of the Gilbreath transform we get the usual inverse binomial transform.
It appears that the terms are mostly 0's and 1's, with occasional eruptions of "geysers". See A362456, A362457.

Examples

			We give two examples. (1) For the Gilbreath transform of the sequence of primes (cf. A000040), the array A is given in A036262. The Gilbreath transform begins {2, 1, 1, 1, 1, ...}, and the famous Gilbreath conjecture is that every term after the initial 2 is equal to 1.
(2) For the Gilbreath transform of {tau(i), i >= 1} (cf. A000005), the array A is given in A362450, and the Gilbreath transform is given in A361897. The authors of the latter sequence conjecture that its terms are just 0's and 1's.
See A362452 for a further example.
		

Crossrefs

Programs

  • Maple
    # To get M terms of the Gilbreath transform of s, assuming offset is 1:
    GT := proc(s,M) local G,u,i;
    u := [seq(s[i],i=1..M)];
    G:=[s[1]];
    for i from 1 to M-1 do
    u:=[seq(abs(u[i+1]-u[i]),i=1..nops(u)-1)];
    G:=[op(G),u[1]]; od:
    G;
    end;
    # For the present sequence:
    GT(numtheory[sigma],150);
    # See link for a more comprehensive Maple program
  • Mathematica
    A362451[nmax_]:=Module[{d=DivisorSigma[1,Range[nmax]]},Join[{1},Table[First[d=Abs[Differences[d]]],nmax-1]]];A362451[200] (* Paolo Xausa, May 07 2023 *)
  • PARI
    lista(nn) = my(v=apply(sigma, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w; ); Vec(list);
    lista(200) \\ (based on PARI program in A361897)

Extensions

More than the usual number of terms are displayed in order to go out beyond the long initial 0,1 subsequence.

A019294 Number (> 0) of iterations of sigma (A000203) required to reach a multiple of n when starting with n.

Original entry on oeis.org

1, 2, 4, 2, 5, 1, 5, 2, 7, 4, 15, 3, 13, 3, 2, 2, 13, 4, 12, 5, 2, 13, 16, 2, 17, 4, 9, 1, 78, 7, 10, 4, 17, 11, 6, 5, 28, 22, 4, 7, 39, 2, 16, 16, 16, 10, 32, 5, 13, 17, 9, 3, 58, 11, 19, 5, 13, 67, 97, 2, 23, 5, 16, 2, 4, 8, 101, 21, 19, 11, 50, 4, 20, 20, 23, 14, 21, 10, 36, 5, 15
Offset: 1

Views

Author

Keywords

Comments

Let sigma^m(n) be result of applying sum-of-divisors function m times to n; sequence gives m(n) = min m such that n divides sigma^m(n).
Perfect numbers require one iteration.
It is conjectured that the sequence is finite for all n.
See also the Cohen-te Riele links under A019276.
a(A111227(n)) > A111227(n). - Reinhard Zumkeller, Aug 02 2012
a(659) > 870. - Michel Marcus, Jan 04 2017

Examples

			If n = 9 the iteration sequence is s(9) = {9, 13, 14, 24, 60, 168, 480, 1512, 4800, 15748, 28672} and Mod[s(9), 9] = {0, 4, 5, 6, 6, 6, 3, 0, 3, 7, 7}. The first iterate which is a multiple of 9 is the 7th = 1512, so a(9) = 7. For n = 67, the 101st iterate is the first, so a(67) = 101. Usually several iterates are divisible by the initial value. E.g., if n = 6, then 91 of the first 100 iterates are divisible by 6.
A difficult term to compute: a(461) = 557. - _Don Reble_, Jun 23 2005
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.

Crossrefs

Cf. A019295 (ratio sigma^m(n)/n), A019276 (indices of records), A019277 (records), A000396.

Programs

  • Haskell
    a019294 n = snd $ until ((== 0) . (`mod` n) . fst)
                            (\(x, i) -> (a000203 x, i + 1)) (a000203 n, 1)
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Magma
    a:=[]; f:=func; for n in [1..81] do k:=n; s:=1; while f(k) mod n ne 0 do k:=f(k); s:=s+1; end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 11 2020
  • Maple
    A019294 := proc(n)
        local a,nitr ;
        a := 1 ;
        nitr := numtheory[sigma](n);
        while modp(nitr,n) <> 0 do
            nitr := numtheory[sigma](nitr) ;
            a := a+1 ;
        end do:
        return a;
    end proc: # R. J. Mathar, Aug 22 2016
  • Mathematica
    f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[ Mod[d, m] == 0, 0, d]]; Table[ Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1, {n, 84}] (* Robert G. Wilson v, Jun 24 2005 *)
    Table[Length[NestWhileList[DivisorSigma[1,#]&,DivisorSigma[1,n], !Divisible[ #,n]&]],{n,90}] (* Harvey P. Dale, Mar 04 2015 *)
  • PARI
    a(n)=if(n<0,0,c=1; s=n; while(sigma(s)%n>0,s=sigma(s); c++); c)
    
  • PARI
    apply( A019294(n,s=n)=for(k=1,oo,(s=sigma(s))%n||return(k)), [1..99]) \\ M. F. Hasler, Jan 07 2020
    

Formula

Conjecture: lim_{n -> oo} log(Sum_{k=1..n} a(k))/log(n) = C = 1.6... - Benoit Cloitre, Aug 24 2002
From Michel Marcus, Jan 02 2017: (Start)
a(n) = 1 for n in A007691.
a(n) = 2 for n in A019278 unless it belongs to A007691.
a(n) = 3 for n in A019292 unless it belongs to A007691 or A019278. (End)

Extensions

Additional comments from Labos Elemer, Jun 20 2001
Edited by M. F. Hasler, Jan 07 2020

A051281 Sum of divisors of n, sigma(n) (A000203), is a power of number of divisors of n, d(n) (A000005).

Original entry on oeis.org

1, 3, 7, 31, 127, 217, 889, 2667, 3937, 8191, 27559, 57337, 131071, 172011, 253921, 524287, 917497, 1040257, 1777447, 3670009, 4063201, 11010027, 12189603, 16252897, 16646017, 66584449, 113770279, 116522119, 225735769, 677207307, 1073602561, 2147483647, 3612185689, 4294434817, 7515217927
Offset: 1

Views

Author

Keywords

Comments

All Mersenne primes (A000668) are terms.
Subsequence of A046528 (product of distinct Mersenne primes). - Michel Marcus, Feb 15 2020

Examples

			d(217) = 4; sigma(217) = 256 = 4^4.
		

Crossrefs

Programs

  • Mathematica
    spdQ[n_]:=Module[{sd=DivisorSigma[1,n],nd=DivisorSigma[0,n]},sd == nd^IntegerExponent[sd,nd]]; Join[{1},Select[Range[2,226000000],spdQ]] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    is(n)=my(t,e=ispower(sigma(n),,&t)); if(!e,return(n==1),nd); nd=numdiv(n); fordiv(e,d,if(t^d==nd,return(1)));0 \\ Charles R Greathouse IV, Feb 19 2013
    
  • PARI
    isA051281(n) = { if(n==1, return(1)); my(sig = sigma(n), ndiv = numdiv(n), v = valuation(sig, ndiv)); (ndiv^v == sig); } \\ Antti Karttunen, Jun 30 2017

Extensions

More terms from Jud McCranie
a(30)-a(32) from Donovan Johnson, Oct 03 2012
a(33)-a(35) from Michel Marcus, Feb 14 2020

A324653 a(n) = A000203(A276086(n)).

Original entry on oeis.org

1, 3, 4, 12, 13, 39, 6, 18, 24, 72, 78, 234, 31, 93, 124, 372, 403, 1209, 156, 468, 624, 1872, 2028, 6084, 781, 2343, 3124, 9372, 10153, 30459, 8, 24, 32, 96, 104, 312, 48, 144, 192, 576, 624, 1872, 248, 744, 992, 2976, 3224, 9672, 1248, 3744, 4992, 14976, 16224, 48672, 6248, 18744, 24992, 74976, 81224, 243672, 57, 171, 228
Offset: 0

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Crossrefs

Cf. A267263, A276150, A324650, A324655 for omega, bigomega, phi and tau analogs, and also A324654.
Cf. also A324054.

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324653(n) = sigma(A276086(n));

Formula

a(n) = A000203(A276086(n)).
For n >= 1, a(A002110(n-1)) = 1+A000040(n).

A229276 Composite squarefree numbers n such that p-tau(n) divides n+sigma(n), where p are the prime factors of n, tau(n) = A000005(n) and sigma(n) = A000203(n).

Original entry on oeis.org

6, 10, 15, 66, 145, 231, 435, 1221, 11571, 99093, 105502, 292434, 449854, 585429, 643858, 968014, 1372494, 1787091, 1939434, 4659114, 5524014, 5654334, 6250371, 6974007, 19495374, 19821714, 28488039, 34701369, 46183893, 81133734, 213352233, 230140869
Offset: 1

Views

Author

Paolo P. Lava, Sep 19 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 435 are 3, 5, 29 and sigma(435) = 720, tau(435) = 8.
435 + 720 = 1155 and 1155 / (3 - 8) = -231, 1155 / (5 - 8) = -385, 1155 / (29 - 8) = 55.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
    else if not type((n+sigma(n))/(a[i][1]-tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(2*10^6);

Extensions

a(21)-a(33) from Giovanni Resta, Sep 20 2013
First term deleted by Paolo P. Lava, Sep 23 2013

A234516 Composite numbers n sorted by decreasing values of alpha(n) = log_n(sigma(n)) - log_n(n+1), where sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

12, 6, 24, 36, 18, 30, 60, 8, 4, 48, 20, 72, 120, 84, 16, 42, 10, 40, 180, 90, 96, 144, 240, 168, 108, 360, 28, 54, 420, 252, 132, 80, 216, 210, 32, 126, 300, 336, 480, 56, 192, 288, 720, 840, 66, 504, 156, 540, 150, 264, 14, 600, 140, 270, 1260, 432, 78, 1080
Offset: 1

Views

Author

Jaroslav Krizek, Jan 03 2014

Keywords

Comments

The number alpha(n) = log_n(sigma(n)) - log_n(n+1) = log_n[sigma(n) / (n+1)] is called the alpha-deviation from primality of number n; alpha(p) = 0 for p = prime. See A234520 for definition of beta(n).
Lim_n->infinity alpha(n) = 0.
Conjecture: Every composite number n has a unique value of alpha(n).
Conjecture: sequence A234517 is not the sequence of numbers from a(n) such that a(n) > a(k) for all k < n.

Examples

			For the number 12; alpha(12) = log_12(sigma(12)) - log_12(12+1) = log_12(28) - log_12(13) = 0.308766187… = A234518 (maximal value of function alpha(n)).
		

Crossrefs

Programs

  • PARI
    lista(nn) = {v = vector(nn, n, if ((n==1) || isprime(n), 0, log(sigma(n)/(n+1))/log(n))); v = vecsort(v,,5); for (i=1, 80, print1(v[i], ", "));} \\ Michel Marcus, Dec 10 2014

A234520 Composite numbers n sorted by decreasing values of beta(n) = sigma(n)^(1/n) - (n+1)^(1/n), where sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

4, 6, 8, 12, 10, 18, 16, 24, 14, 20, 9, 15, 30, 36, 28, 22, 32, 40, 48, 42, 21, 26, 60, 54, 44, 27, 72, 56, 34, 50, 45, 52, 38, 66, 84, 33, 64, 90, 80, 70, 96, 78, 46, 39, 120, 68, 108, 35, 88, 76, 63, 25, 100, 58, 102, 126, 144, 112, 132, 62, 104, 75, 51, 92
Offset: 1

Views

Author

Jaroslav Krizek, Jan 14 2014

Keywords

Comments

The number beta(n) = sigma(n)^(1/n) - (n+1)^(1/n) is called the beta-deviation from primality of the number n; beta(p) = 0 for p = prime. See A234516 for definition of alpha(n).
For number 4; beta(4) = sigma(4)^(1/4) - (4+1)^(1/4), = 7^(1/4) - 5^(1/4) = 0,131227780… = A234522 (maximal value of function beta(n)).
Lim_n->infinity beta(n) = 0.
Conjecture: Every composite number n has a unique value of number beta(n).
See A234523 - sequence of numbers a(n) such that a(n) > a(k) for all k < n.

Crossrefs

A248150 Numbers whose sum of divisors (A000203) is divisible by 4.

Original entry on oeis.org

3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 65, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111, 112, 114, 115, 118
Offset: 1

Views

Author

M. F. Hasler, Oct 02 2014

Keywords

Comments

A subsequence of A028983 (even sum of divisors) which contains all numbers but the squares and twice the squares, so no term of this sequence is of that form, either.
Any number having at least two odd prime factors to an odd power is in this sequence, therefore it has asymptotic density 1. - M. F. Hasler, Apr 26 2017

Crossrefs

First differs from A022544 by including 65.

Programs

  • Mathematica
    Select[Range[200],Divisible[DivisorSigma[1,#],4]&] (* Harvey P. Dale, Feb 20 2015 *)
  • PARI
    for(n=1,999,sigma(n)%4||print1(n","))

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 01 2015

A365398 Length of the longest subsequence of 1, ..., n on which sigma, the sum of the divisors of n (A000203), is nondecreasing.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 24, 24, 25, 25, 25
Offset: 1

Views

Author

Peter Luschny, Sep 08 2023

Keywords

Comments

The sequence was inspired by A365339. In particular, note remark (4.4) by Terence Tao in the linked paper.

Crossrefs

Programs

  • Python
    from bisect import bisect
    from sympy import divisor_sigma
    def A365398(n):
        plist, qlist, c = tuple(divisor_sigma(i) for i in range(1,n+1)), [0]*(n+1), 0
        for i in range(n):
            qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i
            c = max(c,a)
        return c # Chai Wah Wu, Sep 08 2023

Formula

a(n+1) - a(n) <= 1.
a(n) >= A000720(n)+1 since A000203(p) = p+1 for p prime. - Chai Wah Wu, Sep 08 2023
Previous Showing 41-50 of 5459 results. Next