cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 335 results. Next

A203854 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^3, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 13, 21, 79, 266, 957, 3484, 12935, 48768, 185951, 716418, 2781675, 10878520, 42789478, 169181010, 671866245, 2678678730, 10716651456, 43007270292, 173072549610, 698235680844, 2823329210391, 11439823946306, 46440709210035, 188856966693230, 769241291729020
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^13 * (1-4*x^3-x^6)^21 * (1-7*x^4+x^8)^79 * (1-11*x^5-x^10)^266 * (1-18*x^6+x^12)^957 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) *...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^4 * x^n/n ) = g.f. of A203804:
F(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 7854*x^5 + 63629*x^6 +...
where
log(F(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 11^4*x^5/5 + 18^4*x^6/6 + 29^4*x^7/7 + 47^4*x^8/8 +...+ Lucas(n)^4*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^3&]; Array[a, 30] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^3)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^4*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^4 * x^n/n), which is the g.f. of A203804.
a(n) ~ phi^(3*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017

A203855 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^4, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 40, 85, 580, 2928, 17440, 101040, 609660, 3706880, 22887192, 142567200, 895855380, 5667708960, 36072949560, 230763023408, 1482822818820, 9565561745040, 61920953016320, 402074969960400, 2618069854211784, 17090016552803440, 111812320834030800
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^40 * (1-4*x^3-x^6)^85 *
(1-7*x^4+x^8)^580 * (1-11*x^5-x^10)^2928 * (1-18*x^6+x^12)^17440 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) *...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^5 * x^n/n ) = g.f. of A203805:
F(x) = 1 + x + 122*x^2 + 463*x^3 + 11985*x^4 + 85456*x^5 +...
where
log(F(x)) = x + 3^5*x^2/2 + 4^5*x^3/3 + 7^5*x^4/4 + 11^5*x^5/5 + 18^5*x^6/6 + 29^5*x^7/7 + 47^5*x^8/8 +...+ Lucas(n)^5*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^4 &]; Array[a, 30] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^4)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^5*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^5 * x^n/n), which is the g.f. of A203805.
a(n) ~ phi^(4*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017

A203856 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^5, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 121, 341, 4141, 32210, 314717, 2930164, 28666025, 281724928, 2815289555, 28370872818, 288468152625, 2952876368200, 30409537607218, 314760765272250, 3272590619892675, 34158620991538050, 357779277130203136, 3758998894159780092, 39603542856374168550
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^121 * (1-4*x^3-x^6)^341 * (1-7*x^4+x^8)^4141 * (1-11*x^5-x^10)^32210 * (1-18*x^6+x^12)^314717 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^6 * x^n/n ) = g.f. of A203806:
F(x) = 1 + x + 365*x^2 + 1730*x^3 + 97390*x^4 + 948562*x^5 + ...
where
log(F(x)) = x + 3^6*x^2/2 + 4^6*x^3/3 + 7^6*x^4/4 + 11^6*x^5/5 + 18^6*x^6/6 + 29^6*x^7/7 + 47^6*x^8/8 + ... + Lucas(n)^6*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^5&]/n; Array[a, 20] (* Jean-François Alcover, Dec 07 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^5)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^6*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^6 * x^n/n), which is the g.f. of A203806.
a(n) ~ phi^(5*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017

A203857 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^6, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 364, 1365, 29230, 354312, 5667900, 84974760, 1347387210, 21411102720, 346282421940, 5645803690800, 92886793449030, 1538448587832240, 25635241395476100, 429333683845968552, 7222607529064709670, 121980435560782376760, 2067248664062116147200
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^364 * (1-4*x^3-x^6)^1365 * (1-7*x^4+x^8)^29230 * (1-11*x^5-x^10)^354312 * (1-18*x^6+x^12)^5667900 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^7 * x^n/n ) = g.f. of A203807:
F(x) = 1 + x + 1094*x^2 + 6555*x^3 + 809765*x^4 + 10676072*x^5 + ...
where log(F(x)) = x + 3^7*x^2/2 + 4^7*x^3/3 + 7^7*x^4/4 + 11^7*x^5/5 + 18^7*x^6/6 + 29^7*x^7/7 + 47^7*x^8/8 + ... + Lucas(n)^7*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^6&]/n; Array[a, 18] (* Jean-François Alcover, Dec 07 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^6)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^7*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^7 * x^n/n), which is the g.f. of A203807.
a(n) ~ phi^(6*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017

A203858 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^7, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 1093, 5461, 205339, 3897434, 102033577, 2464268044, 63327787115, 1627243839488, 42592757748839, 1123514934469218, 29909548355299575, 801531714260597080, 21610508530971123358, 585611144766061271010, 15940294818101008311105, 435592135387553867410170
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^1093 * (1-4*x^3-x^6)^5461 * (1-7*x^4+x^8)^205339 * (1-11*x^5-x^10)^3897434 * (1-18*x^6+x^12)^102033577 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^8 * x^n/n ) = g.f. of A203808:
F(x) = 1 + x + 3281*x^2 + 25126*x^3 + 6845526*x^4 + 121368902*x^5 + ...
where
log(F(x)) = x + 3^8*x^2/2 + 4^8*x^3/3 + 7^8*x^4/4 + 11^8*x^5/5 + 18^8*x^6/6 + 29^8*x^7/7 + 47^8*x^8/8 + ... + Lucas(n)^8*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^7 &]/n; Array[a, 50] (* G. C. Greubel, Mar 05 2018 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^7)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^8*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^8 * x^n/n), which is the g.f. of A203808.
a(n) ~ phi^(7*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017

A203859 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^8, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 3280, 21845, 1439560, 42871776, 1836648080, 71463773280, 2976410112120, 123670531932160, 5238909421389744, 223579471959374400, 9630874585937597160, 417598023129771078720, 18217658692611614215920, 798773601460909332885856, 35180230663617319463871240
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^3280 * (1-4*x^3-x^6)^21845 * (1-7*x^4+x^8)^1439560 * (1-11*x^5-x^10)^42871776 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) *...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^9 * x^n/n ) = g.f. of A203809:
F(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 +...
where
log(F(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 +...+ Lucas(n)^9*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^8&]/n; Array[a, 30] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^8)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^9*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^9 * x^n/n), which is the g.f. of A203809.
a(n) ~ phi^(8*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017

A153173 a(n) = L(5*n)/L(n) where L(n) = Lucas number A000204(n).

Original entry on oeis.org

11, 41, 341, 2161, 15251, 103361, 711491, 4868641, 33391061, 228811001, 1568437211, 10749853441, 73681573691, 505018447961, 3461454668501, 23725145626561, 162614613425891, 1114577020834241, 7639424866266611
Offset: 1

Views

Author

Artur Jasinski, Dec 20 2008

Keywords

Comments

All numbers in this sequence are congruent to 1 mod 10.

Crossrefs

Programs

  • Magma
    I:=[11, 41, 341, 2161, 15251]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[5*n]/LucasL[n], {n, 1, 50}]
    CoefficientList[Series[x*(11-14*x-29*x^2+6*x^3+x^4)/((1-x)*(x^2-7*x+1)*(x^2+3*x+1)), {x,0,50}], x] (* G. C. Greubel, Dec 21 2017 *)
    a[ n_] := 1 + 5*Fibonacci[n]*Fibonacci[3*n]; (* Michael Somos, Apr 23 2022 *)
  • PARI
    {L(n)=fibonacci(n-1)+fibonacci(n+1)}; a(n) = L(5*n)/L(n) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    my(x='x+O('x^30)); Vec(x*(11-14*x-29*x^2+6*x^3+x^4 )/((1-x)*(x^2-7*x +1)*(x^2+3*x+1))) \\ G. C. Greubel, Dec 21 2017
    
  • PARI
    {a(n) = 1 + 5*fibonacci(n)*fibonacci(3*n)}; /* Michael Somos, Apr 23 2022 */
    

Formula

From R. J. Mathar, Oct 22 2010: (Start)
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(11-14*x-29*x^2+6*x^3+x^4)/( (x-1)*(x^2-7*x+1)*(x^2+3*x+1) ).
a(n) = 1 + A056854(n) - (-1)^n*A005248(n). (End)
From Amiram Eldar, Feb 02 2022: (Start)
a(n) = Lucas(2*n)^2 - (-1)^n*Lucas(2*n) - 1 (Carlitz, Problem B-185).
a(n) = (Lucas(2*n) - 3*(-1)^n)^2 + (-1)^n*(5*Fibonacci(n))^2 (Carlitz, Problem B-186). (End)
a(n) = a(-n) = 1 + 10*A085695(n) = 5 + L(n-1)*L(n)^2*L(n+1) for all n in Z. - Michael Somos, Apr 23 2022

A246453 Lucas numbers (A000204) of the form n^2 + 2.

Original entry on oeis.org

3, 11, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 1

Views

Author

Michel Lagneau, Aug 26 2014

Keywords

Comments

a(n) = {11} union {A000204(2+4*n)} for n=0,1,...
Intersection of A000204 and A059100. - Michel Marcus, Aug 26 2014

Crossrefs

Cf. A000204 (Lucas), A059100 (n^2+2).
Cf. quadrisection of A000032: A056854 (first), A056914 (second), this sequence (third, without 11), A288913 (fourth).

Programs

  • Magma
    I:=[3,11,18,123]; [n le 4 select I[n] else 7*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    with(combinat,fibonacci):lst:={}:lst1:={}:nn:=5000:
      for n from 1 to nn do:
        lst:=lst union {2*fibonacci(n-1)+fibonacci(n)}:
      od:
       for m from 1 to nn do:
        if {m^2+2} intersect lst = {m^2+2}
        then
        lst1:=lst1 union {m^2+2}:
        else
        fi:
       od:
       print(lst1):
  • Mathematica
    CoefficientList[Series[x*(3-10*x-56*x^2+8*x^3)/(1-7*x+x^2), {x,0,50}], x] (* or *) LinearRecurrence[{7,-1}, {3, 11, 18, 123}, 30] (* G. C. Greubel, Dec 21 2017 *)
    Select[LucasL[Range[100]],IntegerQ[Sqrt[#-2]]&] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    lista(nn) = for (n=0, nn, luc = fibonacci(n+1) + fibonacci(n-1); if (issquare(luc-2), print1(luc, ", "))); \\ Michel Marcus, Mar 29 2016
    
  • PARI
    Vec(x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    

Formula

From Colin Barker, Jun 20 2017: (Start)
G.f.: x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2).
a(n) = (2^(-n)*((7+3*sqrt(5))^n*(-20+9*sqrt(5)) + (7-3*sqrt(5))^n*(20+9*sqrt(5)))) / sqrt(5) for n>2.
a(n) = 7*a(n-1) - a(n-2) for n>4. (End)
E.g.f.: 2*exp(7*x/2)*(9*cosh(3*sqrt(5)*x/2) - 4*sqrt(5)*sinh(3*sqrt(5)*x/2)) + 4*x^2 - 18. - Stefano Spezia, Apr 14 2025

Extensions

Corrected by Michel Marcus, Mar 29 2016

A086600 Number of primitive prime factors in the n-th Lucas number A000204(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 2
Offset: 1

Views

Author

T. D. Noe, Jul 24 2003

Keywords

Comments

A prime factor of Lucas(n) is called primitive if it does not divide Lucas(r) for any r < n. It can be shown that there is at least one primitive prime factor for n > 6. When n is prime, all the prime factors of Lucas(n) are primitive.

Examples

			a(22) = 2 because Lucas(22) = 3*43*307 and neither 43 nor 307 divide a smaller Lucas number.
		

Crossrefs

Cf. A000204 (Lucas numbers), A058036, A086598 (number of distinct prime factors), A086599 (number of prime factors, counting multiplicity), A274333.

Programs

  • Magma
    lst:=[]; pr:=1; for n in [1..105] do pd:=PrimeDivisors(Lucas(n)); d:=1; t:=0; for c in [1..#pd] do f:=pd[c]; if Gcd(pr, f) eq 1 then t+:=1; else d:=d*f; end if; end for; Append(~lst, t); pr:=pr*Truncate(Lucas(n)/d); end for; lst; // Arkadiusz Wesolowski, Jun 22 2016
  • Mathematica
    Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; pLst={}; Join[{0}, Table[f=Transpose[FactorInteger[Lucas[n]]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 2, 150}]]

Formula

a(n) = Sum{d|n and n/d odd} mu(n/d) a(d) -1 if 6|n and n/6 is a power of 2.

A156234 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*A000204(n)*x^n/n ).

Original entry on oeis.org

1, 1, 5, 10, 30, 63, 170, 355, 880, 1875, 4349, 9189, 20810, 43355, 95140, 198247, 424527, 875965, 1849535, 3781820, 7873167, 16005196, 32883560, 66390850, 135198990, 271051271, 546931398, 1090751095, 2183512495, 4329540830
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2009

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ),
and to the g.f. of Fibonacci numbers: exp( Sum_{n>=1} A000204(n)*x^n/n ) where A000204 is the Lucas numbers.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 10*x^3 + 30*x^4 + 63*x^5 + 170*x^6 + 355*x^7 + ...
log(A(x)) = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 + ...
Also, the g.f. equals the product:
A(x) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10) * (1-18*x^6+x^12) * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) * ...).
		

Crossrefs

Cf. A225528, A000203 (sigma), A000204 (Lucas), A000041 (partitions), A000045.

Programs

  • Maple
    N:= 100: # to get a(0) to a(N)
    G:= exp(add(numtheory:-sigma(n)*lucas(n)*x^n/n,n=1..N)):
    S:= series(G,x,N+1):
    seq(coeff(S,x,i),i=0..N); # Robert Israel, Dec 23 2015
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,sigma(k)*(fibonacci(k-1)+fibonacci(k+1))*x^k/k)+x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(prod(m=1,n,1/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(n)*A000204(k)*a(n-k) for n>0, with a(0) = 1.
G.f.: Product_{n>=1} 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
Logarithmic derivative yields A225528.
Previous Showing 21-30 of 335 results. Next