cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 4813 results. Next

A126883 a(n) = (2^0)*(2^1)*(2^2)*(2^3)...(2^n)-1 = 2^T(n) - 1 where T(n) = A000217(n) is the n-th triangular number.

Original entry on oeis.org

0, 1, 7, 63, 1023, 32767, 2097151, 268435455, 68719476735, 35184372088831, 36028797018963967, 73786976294838206463, 302231454903657293676543, 2475880078570760549798248447, 40564819207303340847894502572031, 1329227995784915872903807060280344575
Offset: 0

Views

Author

Marco Matosic, Dec 29 2006

Keywords

Comments

For n > 2, a(n) and a(n-1) share at least one prime factor.
Shows how many patterns can be created with 1-color thread while sewing on a button with buttonholes located on the vertices of a convex n-gon. - Ivan N. Ianakiev, Feb 09 2012

References

  • Masha Gessen, Perfect Rigor, A Genius and the Mathematical Breakthrough of the Century, Houghton Mifflin Harcourt, 2009, page 38.

Crossrefs

Programs

  • GAP
    List([-1..15],n->2^(Binomial(2+n,n))-1); # Muniru A Asiru, Feb 21 2019
  • Maple
    seq(2^(binomial(n+1, 2))-1, n=0..12); # Zerinvary Lajos, Jun 12 2007
  • Mathematica
    FoldList[Times,2^Range[0,20]]-1 (* Harvey P. Dale, Sep 09 2015 *)
    2^Accumulate[Range[0,20]]-1 (* Harvey P. Dale, Jun 03 2019 *)

Formula

a(n) = A006125(n+1) - 1. - Zerinvary Lajos, Jun 12 2007

Extensions

Corrected and extended by Harvey P. Dale, Sep 09 2015

A153007 Triangular number A000217(n) minus toothpick number A153006(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 0, 3, 8, 11, 13, 15, 13, 5, 0, 7, 20, 31, 41, 51, 57, 57, 59, 69, 79, 82, 81, 74, 51, 17, 0, 15, 44, 71, 97, 123, 145, 161, 179, 205, 231, 250, 265, 274, 267, 249, 247, 273, 307, 334, 357, 374, 375, 364, 363, 376, 380, 364, 332, 270, 163, 49, 0, 31, 92, 151
Offset: 0

Views

Author

Omar E. Pol, Dec 19 2008, May 27 2009

Keywords

Crossrefs

Formula

a(n) = A000217(n)-A153006(n).

Extensions

More terms from R. J. Mathar, Jul 13 2009

A185096 Let T(n) = n(n+1)/2 be the n-th triangular number (A000217); a(n) = T(8T(n)).

Original entry on oeis.org

0, 36, 300, 1176, 3240, 7260, 14196, 25200, 41616, 64980, 97020, 139656, 195000, 265356, 353220, 461280, 592416, 749700, 936396, 1155960, 1412040, 1708476, 2049300, 2438736, 2881200, 3381300, 3943836, 4573800, 5276376, 6056940, 6921060, 7874496, 8923200, 10073316, 11331180, 12703320, 14196456, 15817500, 17573556, 19471920, 21520080
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2011

Keywords

References

  • Claudi Alsina and Roger B. Nelsen, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 4.

Crossrefs

Programs

  • Mathematica
    Table[2*n*(n + 1)*(2*n + 1)^2, {n, 0, 50}] (* G. C. Greubel, Jun 22 2017 *)
  • PARI
    for(n=0,50, print1(2*n*(n+1)*(2*n+1)^2, ", ")) \\ G. C. Greubel, Jun 22 2017

Formula

From G. C. Greubel, Jun 22 2017: (Start)
a(n) = 2*n*(n + 1)*(2*n + 1)^2.
G.f.: 12*x*(3 + 10*x + 3*x^2)/(1 - x)^5.
E.g.f.: 2*x*(18 + 57*x + 32*x^2 + 4*x^3)*exp(x). (End)
From Elmo R. Oliveira, Sep 08 2025: (Start)
a(n) = 12*A180324(n) = 4*A339483(n) = A322677(n)/8.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)

A196421 a(n) = prime(n)*T(n), where T = A000217.

Original entry on oeis.org

2, 9, 30, 70, 165, 273, 476, 684, 1035, 1595, 2046, 2886, 3731, 4515, 5640, 7208, 9027, 10431, 12730, 14910, 16863, 19987, 22908, 26700, 31525, 35451, 38934, 43442, 47415, 52545, 62992, 69168, 76857, 82705, 93870, 100566, 110371, 120783, 130260, 141860
Offset: 1

Views

Author

Harvey P. Dale, Oct 15 2011

Keywords

Comments

This sequence is mentioned in A077320. - Omar E. Pol, Mar 12 2012

Examples

			The 4th prime is 7, the 4th triangular number is 10, therefore a(4) = 7*10 = 70.
		

Crossrefs

Row sums of triangle A077320. - Omar E. Pol, Mar 12 2012
Subsequence of A085783. - Michel Marcus, May 15 2018

Programs

  • Mathematica
    With[{nn=60},Prime[Range[nn]]Accumulate[Range[nn]]]
  • PARI
    a(n)=prime(n)*binomial(n+1,2) \\ Charles R Greathouse IV, Nov 22 2011
    
  • Python
    from sympy import prime
    def a(n): return prime(n) * n*(n+1)//2
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) ~ 0.5 n^3 log n. - Charles R Greathouse IV, Nov 22 2011
a(n) = A000040(n)*A000217(n). - Omar E. Pol, Mar 12 2012

A207339 Triangular numbers T from A000217 such that (4*T+1)/5 is prime.

Original entry on oeis.org

6, 21, 36, 66, 91, 136, 171, 351, 496, 561, 741, 946, 1176, 1326, 1596, 2016, 2346, 2701, 2926, 3321, 3486, 4851, 6216, 6441, 7626, 8646, 8911, 9591, 10011, 10296, 11026, 11476, 13041, 15051, 16471, 16836, 17391, 18336, 19701, 21736
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes are gven in A207337, where also equivalent formulations are found.
The indices of these triangular numbers are given by (A002733(n)-1)/2.

Examples

			a(3) = 36 = T((17-1)/2) = T(8)=A000217(8). (4*36+1)/5 = 29 = A207337(3).
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[300]],PrimeQ[(4#+1)/5]&] (* Harvey P. Dale, Sep 18 2019 *)

Formula

a(n) = T(K(n)):= A000217(K(n)) with K(n)=(m(n)-1)/2, and m(n) given in A002733(n).

A230405 a(n) = A000217(A230404(n+1)); the first differences of A219650.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 10, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 31 2013

Keywords

Comments

Construction: Count the trailing zeros in the factorial base representation (A007623) of 2n+2 (2, 4, 6, 8, ...) and then take the corresponding triangular number from A000217.

Crossrefs

First differences of A219650. Can be used to compute A219650 and A230412.
Cf. also A230413.

Formula

a(n) = A000217(A230404(n+1)).
a(n) = A219650(n+1) - A219650(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2. - Amiram Eldar, Jan 05 2024

A253880 Triangular numbers (A000217) that are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 253, 64261, 16322041, 4145734153, 1053000152821, 267457893082381, 67933251842771953, 17254778510170993681, 4382645808331589623021, 1113174780537713593253653, 282742011610770921096804841, 71815357774355276244995175961, 18240818132674629395307677889253
Offset: 1

Views

Author

Colin Barker, Jan 17 2015

Keywords

Examples

			253 is in the sequence because it is the 22nd triangular number and the 9th centered heptagonal number.
		

Crossrefs

Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in A302329. This is the case k=8.

Programs

  • Mathematica
    LinearRecurrence[{254,-1},{1,253},20] (* Harvey P. Dale, May 17 2017 *)
  • PARI
    Vec(-x*(x-1)/(x^2-254*x+1) + O(x^100))

Formula

a(n) = 254*a(n-1) - a(n-2).
G.f.: -x*(x-1) / (x^2 - 254*x + 1).
a(n) = (1/8)*T(2*n-1, 8), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022

A254627 Indices of centered pentagonal numbers (A005891) that are also triangular numbers (A000217).

Original entry on oeis.org

1, 2, 11, 28, 189, 494, 3383, 8856, 60697, 158906, 1089155, 2851444, 19544085, 51167078, 350704367, 918155952, 6293134513, 16475640050, 112925716859, 295643364940, 2026369768941, 5305104928862, 36361730124071, 95196245354568, 652484772464329
Offset: 1

Views

Author

Colin Barker, Feb 03 2015

Keywords

Comments

Also positive integers y in the solutions to x^2 - 5*y^2 + x + 5*y - 2 = 0, the corresponding values of x being A254626.
Also indices of centered pentagonal numbers (A005891) that are also hexagonal numbers (A000384). - Colin Barker, Feb 11 2015

Examples

			2 is in the sequence because the 2nd centered pentagonal number is 6, which is also the 3rd triangular number.
		

Crossrefs

Programs

  • Magma
    [(2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4 : n in [1..30]]; // G. C. Greubel, Apr 19 2019
    
  • Mathematica
    CoefficientList[Series[x (x^3 + 9 x^2 - x - 1)/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 25}], x] (* Michael De Vlieger, Jun 06 2016 *)
    LinearRecurrence[{1,18,-18,-1,1},{1,2,11,28,189},30] (* Harvey P. Dale, Apr 23 2017 *)
  • PARI
    Vec(x*(x^3+9*x^2-x-1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^30))
    
  • PARI
    {a(n) = (2 +(1+3*(-1)^n)*fibonacci(3*n) - 2*(-1)^n*fibonacci(3*n+1))/4}; \\ G. C. Greubel, Apr 19 2019
    
  • Sage
    [(2 +(1+3*(-1)^n)*fibonacci(3*n) -2*(-1)^n*fibonacci(3*n+1))/4 for n in (1..30)] # G. C. Greubel, Apr 19 2019

Formula

a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+x-9*x^2-x^3)/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)).
a(n) = (10 - sqrt(5)*(2-sqrt(5))^n - 5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + sqrt(5)*(2+sqrt(5))^n + (-2-sqrt(5))^n*(-5+2*sqrt(5)))/20. - Colin Barker, Jun 06 2016
a(2*n+2) = A232970(2*n+1); a(2*n+1) = A110679(2*n). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
a(n) = (2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4. - G. C. Greubel, Apr 19 2019

A257712 Triangular numbers (A000217) that are the sum of eight consecutive triangular numbers.

Original entry on oeis.org

120, 276, 1176, 28920, 126756, 306936, 1345620, 33362196, 146264856, 354192420, 1552832856, 38499933816, 168789505620, 408737734296, 1791967758756, 44428890250020, 194782943209176, 471682991173716, 2067929240760120, 51270900848577816, 224779347673872036
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			120 is in the sequence because T(15) = 120 = 1+3+6+10+15+21+28+36 = T(1)+ ... +T(8).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 1154, -1154, 0, 0, -1, 1}, {120, 276, 1176, 28920, 126756, 306936, 1345620, 33362196, 146264856}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
    Select[Total/@Partition[Accumulate[Range[5*10^6]],8,1],OddQ[ Sqrt[ 1+8#]]&] (* The program generates the first 16 terms of the sequence *) (* Harvey P. Dale, Feb 27 2022 *)
  • PARI
    Vec(-12*x*(3*x^8+7*x^6+13*x^5-3387*x^4+2312*x^3+75*x^2+13*x+10) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)*(x^4+34*x^2+1)) + O(x^100))

Formula

G.f.: -12*x*(3*x^8+7*x^6+13*x^5-3387*x^4+2312*x^3+75*x^2+13*x+10) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)*(x^4+34*x^2+1)).

A257713 Triangular numbers (A000217) that are the sum of ten consecutive triangular numbers.

Original entry on oeis.org

1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485, 15054681960, 60093684540, 296985006165, 4392693942120, 21708840917445, 86655051404085, 428252172907560, 6334261618255845, 31304133548245020, 124956524030977320, 617539336347666645
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			1485 is in the sequence because T(54) = 1485 = 78+91+105+120+136+153+171+190+210+231 = T(12)+ ... +T(21).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 1442, -1442, 0, 0, -1, 1}, {1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)) + O(x^100))

Formula

G.f.: -15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)).
Previous Showing 61-70 of 4813 results. Next