cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 4813 results. Next

A258257 The number of representations of n as a minimal number of triangular numbers, A000217(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 5, 1, 2, 1, 2, 1, 1, 3, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 2, 3, 1, 1, 2, 3, 6, 1, 1, 3, 3, 1
Offset: 1

Views

Author

Martin Renner, May 24 2015

Keywords

Examples

			a(5) = 1 since 5 = 1 + 1 + 3 is the only representation as a minimal number of three triangular numbers.
a(16) = 2 since 16 = 1 + 15 = 6 + 10 has two representations as a minimal number of two triangular numbers.
		

Crossrefs

Programs

  • Mathematica
    t[n_] := n (n + 1)/2; a[n_] := Block[{k = 1, t, tt = t /@ Range[ Sqrt[2*n]]}, While[{} == (r = IntegerPartitions[n, {k}, tt]), k++]; Length@r]; Array[a, 100] (* Giovanni Resta, Jun 09 2015 *)

A259413 Triangular numbers (A000217) that are the sum of eleven consecutive triangular numbers.

Original entry on oeis.org

2145, 3916, 7381, 13530, 843051, 1547920, 2926990, 5374281, 335521560, 616057651, 1164924046, 2138939715, 133536727236, 245189386585, 463636832725, 851292621696, 53147281907775, 97584759792586, 184526294489911, 338812324484700, 21152484662556621
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			2145 is in the sequence because T(65) = 2145 = 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 + 300 = T(14) + ... + T(24).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 398, -398, 0, 0, -1, 1}, {2145, 3916, 7381, 13530, 843051, 1547920, 2926990, 5374281, 335521560}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-11*x*(6*x^8-x^7+x^5-2199*x^4+559*x^3+315*x^2+161*x+195)/((x-1)*(x^4-20*x^2+1)*(x^4+20*x^2+1)) + O(x^30))

Formula

G.f.: -11*x*(6*x^8-x^7+x^5-2199*x^4+559*x^3+315*x^2+161*x+195) / ((x-1)*(x^4-20*x^2+1)*(x^4+20*x^2+1)).

A259414 Triangular numbers (A000217) that are the sum of thirteen consecutive triangular numbers.

Original entry on oeis.org

2080, 414505, 28815436, 49317346, 3428789455, 698283666730, 48548229019381, 83089887991201, 5776831256176630, 1176469718198438755, 81794153348207147926, 139990009467226925656, 9732816854065394603605, 1982118534159467652450580, 137806953149317550935817071
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			2080 is in the sequence because T(64) = 2080 = 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 = T(11) + ... + T(23).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 1684802, -1684802, 0, 0, -1, 1}, {2080, 414505, 28815436, 49317346, 3428789455, 698283666730, 48548229019381, 83089887991201, 5776831256176630}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-13*x*(7*x^8 +153*x^6 +31725*x^5 -9608927*x^4 +1577070*x^3 +2184687*x^2 +31725*x +160) / ((x -1)*(x^2 -36*x -1)*(x^2 +36*x -1)*(x^4 +1298*x^2 +1)) + O(x^20))

Formula

G.f.: -13*x*(7*x^8 +153*x^6 +31725*x^5 -9608927*x^4 +1577070*x^3 +2184687*x^2 +31725*x +160) / ((x -1)*(x^2 -36*x -1)*(x^2 +36*x -1)*(x^4 +1298*x^2 +1)).

A259415 Triangular numbers (A000217) that are the sum of seventeen consecutive triangular numbers.

Original entry on oeis.org

1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130, 172110498456, 463127571831, 37515654714891, 100949879501796, 749369070309030, 2016457340944761, 163343152011830505, 439535752164830646, 3262752760014579156
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			1326 is in the sequence because T(51) = 1326 = 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 = T(3) + ... + T(19).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 4354, -4354, 0, 0, -1, 1}, {1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
    Module[{nn=10^6},Select[Total/@Partition[Accumulate[Range[nn]],17,1],OddQ[ Sqrt[8#+1]]&]] (* Harvey P. Dale, Mar 19 2023 *)
  • PARI
    Vec(-51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)) + O(x^30))

Formula

G.f.: -51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)).

A276598 Values of m such that m^2 + 3 is a triangular number (A000217).

Original entry on oeis.org

0, 5, 30, 175, 1020, 5945, 34650, 201955, 1177080, 6860525, 39986070, 233055895, 1358349300, 7917039905, 46143890130, 268946300875, 1567533915120, 9136257189845, 53250009223950, 310363798153855, 1808932779699180, 10543232880041225, 61450464500548170
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			5 is in the sequence because 5^2 + 3 = 28, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276599 (k=5), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.
Cf. A328791 (the resulting triangular numbers).

Programs

  • Magma
    [n le 2 select 5*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[5*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{6,-1},{0,5},30] (* Harvey P. Dale, Apr 26 2019 *)
    (5/2)*Fibonacci[2*Range[30] -2, 2] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(5*x^2/(1-6*x+x^2) + O(x^30)))
    
  • PARI
    a(n)=([0,1;-1,6]^n*[-5;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • Sage
    [(5/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 5*A001109(n-1).
a(n) = 5*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n )/(4*sqrt(2)).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 5*x^2 / (1-6*x+x^2).
a(n) = (5/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021

A349243 Indices of triangular numbers A000217 with only odd digits.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 18, 26, 34, 58, 62, 101, 109, 138, 149, 154, 177, 178, 186, 189, 250, 257, 266, 382, 554, 586, 589, 621, 622, 862, 893, 1013, 1050, 1057, 1069, 1258, 1354, 1370, 1634, 1658, 1738, 1754, 1777, 1786, 1853, 1885, 1965, 2657, 2666, 2741, 2818, 3218, 3346, 3445, 3457, 3794, 3845
Offset: 1

Views

Author

M. F. Hasler, Nov 20 2021

Keywords

Crossrefs

Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117960 (triangular numbers with only odd digits).

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from
          1+`if`(n=1, 0, b(n-1)) while 0=mul(irem(i, 2),
          i=convert(k*(k+1)/2, base, 10)) do od; k
        end:
    seq(a(n), n=1..57);  # Alois P. Heinz, Nov 22 2021
  • Mathematica
    Select[Range[4000], AllTrue[IntegerDigits[#*(# + 1)/2], OddQ] &] (* Amiram Eldar, Nov 20 2021 *)
    Position[Accumulate[Range[4000]],?(AllTrue[IntegerDigits[#],OddQ]&)]//Flatten (* _Harvey P. Dale, Sep 06 2023 *)
  • PARI
    select( {is_A349243(n)=Set(digits(n*(n+1)\2)%2)==[1]}, [1..9999])
    
  • Python
    from itertools import islice, count
    def A349243(): return filter(lambda n: set(str(n*(n+1)//2)) <= {'1','3','5','7','9'}, count(0))
    A349243_list = list(islice(A349243(),20)) # Chai Wah Wu, Nov 22 2021

Formula

a(n) = floor(sqrt(2*A117960(n))).

A061208 Numbers which can be expressed as sum of distinct triangular numbers (A000217).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Comments

These numbers were called "almost-triangular" numbers during the Peru's Selection Test for the XII IberoAmerican Olympiad (1998). All numbers >= 34 are almost-triangular: see link. [Bernard Schott, Feb 04 2013]

Examples

			25 = 1 + 3 + 6 + 15
		

Crossrefs

Cf. A000217, A007294, A051611, A051533. Complement of A053614.

Programs

  • Maple
    gf := product(1+x^(j*(j+1)/2), j=1..100): s := series(gf, x, 200): for i from 1 to 200 do if coeff(s, x, i) > 0 then printf(`%d,`,i) fi:od:

Extensions

Corrected and extended by James Sellers, Apr 24 2001

A065113 Sum of the squares of the a(n)-th and the (a(n)+1)st triangular numbers (A000217) is a perfect square.

Original entry on oeis.org

6, 40, 238, 1392, 8118, 47320, 275806, 1607520, 9369318, 54608392, 318281038, 1855077840, 10812186006, 63018038200, 367296043198, 2140758220992, 12477253282758, 72722761475560, 423859315570606, 2470433131948080, 14398739476117878, 83922003724759192
Offset: 1

Views

Author

Robert G. Wilson v, Nov 12 2001

Keywords

Comments

The sequence of square roots of the sum of the squares of the n-th and the (n+1)st triangular numbers is A046176.

Examples

			T6 = 21 and T7 = 28, 21^2 + 28^2 = 441 + 784 = 1225 = 35^2.
		

Crossrefs

Cf. A001652, A002315, A003499 (first differences), A065651.

Programs

  • Mathematica
    CoefficientList[ Series[2*(x - 3)/(-1 + 7x - 7x^2 + x^3), {x, 0, 24} ], x]
    LinearRecurrence[{7,-7,1},{6,40,238},41] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    a(n)=-1+subst(poltchebi(abs(n+1))-poltchebi(abs(n)),x,3)/2
    
  • PARI
    Vec(2*x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^40)) \\ Colin Barker, Mar 05 2016

Formula

a(n) = 2*A001652(n) = -1 + A002315(n).
a(n) - a(n-1) = A003499(n).
From Michael Somos, Apr 07 2003: (Start)
G.f.: 2*x*(3-x)/((1-6*x+x^2)*(1-x)).
a(n) = 6*a(n-1) - a(n-2) + 4.
a(-1-n) = -a(n) - 2. (End)
a(1)=6, a(2)=40, a(3)=238, a(n) = 7*a(n-1)-7*a(n-2)+a(n-3). - Harvey P. Dale, Dec 27 2011
a(n)^2 + (a(n)+2)^2 = A075870(n+1)^2 = A165518(n+1). - Joerg Arndt, Feb 15 2012
a(n) = (-2-(3-2*sqrt(2))^n*(-1+sqrt(2))+(1+sqrt(2))*(3+2*sqrt(2))^n)/2. - Colin Barker, Mar 05 2016
From Klaus Purath, Sep 05 2021: (Start)
(a(n+1) - a(n) - a(n-1) + a(n-2))/8 = A005319(n), for n >= 3.
((a(n) - a(n-1))^2)/2 - 2 = A005319(n)^2 = 2*A132592(n), for n>= 2.
a(n) = A265278(2*n+1).
a(n) = A293004(2*n+1).
a(n) = A213667(2*n).
a(n) = Sum_{k=1..n} A003499(k). (End)

A080248 Stirling-like number triangle defined by sequence A000217.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 10, 1, 1, 40, 73, 20, 1, 1, 121, 478, 273, 35, 1, 1, 364, 2989, 3208, 798, 56, 1, 1, 1093, 18298, 35069, 15178, 1974, 84, 1, 1, 3280, 110881, 368988, 262739, 56632, 4326, 120, 1, 1, 9841, 668566, 3800761, 4310073, 1452011, 177760
Offset: 0

Views

Author

Paul Barry, Feb 17 2003

Keywords

Comments

Columns include A003462, A016211, A021514. The defining sequence A000217(n) = C(n+1,2) is the sequence of partial sums of the sequence (0,1,2,3,4,...) which defines the Stirling numbers of the second kind A008277.
n-th row = M^n * [1,0,0,0,...], where M = an infinite lower triangular matrix with (1, 3, 6, ...) in the main diagonal and (1, 1, 1, ...) in the subdiagonal. - Gary W. Adamson, Apr 13 2009
Row sums = A124373 starting (1, 2, 6, 25, 135, ...). - Gary W. Adamson, Jul 11 2011

Examples

			Rows are
  {1},
  {1,  1},
  {1,  4,  1},
  {1, 13, 10,  1},
  {1, 40, 73, 20, 1},
  ...
For example, 73 = 13 + 6*10, 20 = 10 + 10*1.
		

Crossrefs

Programs

  • Maple
    gf  := k -> 1/mul(1 - x*j*(j-1)/2, j=0..k+2):
    ser := k -> series(gf(k), x, 16):
    T := (n, k) -> coeff(ser(k), x, n-k):
    seq(print(seq(T(n, k), k=0..n)), n=0..8); # Peter Luschny, Aug 29 2020
  • Mathematica
    max = 10; t[n_, n_] = n*(n+1)/2; t[n_, k_] /; k == n-1 = 1; t[, ] = 0; m = Table[t[n, k], {n, 1, max}, {k, 1, max}]; row[n_] := MatrixPower[m, n][[All, 1]]; Table[Take[row[n], n+1], {n, 0, max-1}] // Flatten (* Jean-François Alcover, Jun 25 2013, after Gary W. Adamson *)
  • PARI
    {T(n, k) = local(s); if( k<0 || k>n, 0, forvec(v = vector(n-k, i, [0, k]), s += prod(i=1, n-k, v[i] * (v[i] + 1) / 2), 1)); s}; /* Michael Somos, Feb 06 2004 */

Formula

Columns are generated by 1/Product_{k=1..n+1} (1 - C(k + 1, 2)*x). [In other words:
T(n, k) = [x^(n-k)] 1/Product_{j=0..k+2}(1 - x*binomial(j, 2)).]
T(n, k) = (k*(k+1)/2) * T(n-1,k) + T(n-1,k-1), T(n,n)=1. - Vladimir Kruchinin, Aug 25 2020
T(n,k) = (Sum_{i=0..k} (-1)^(k-i) * (2*i + 3) * binomial(2*k + 3,k-i) * ((i+1) * (i+2) / 2)^(n+1)) * 2^(k+1) / (2*k + 3)! for 0 <= k <= n. - Werner Schulte, Oct 29 2020
The polynomials p(n,x) = Sum_{k=0..n} T(n,k) * (k!*(k+1)!/2^k) * x^(k+2) satisfy for n >= 0 the equations p(n+1,x) = p(1,x) * p''(n,x) / 2 and p(n,-1) = 0^n when p'' is the second derivative of p. - Werner Schulte, Dec 15 2020

A108552 Integer values of (1*2*...*k)/(1+2+...+k) = k!/T(k) = A000142(k)/A000217(k), k>=1.

Original entry on oeis.org

1, 1, 8, 180, 1120, 8064, 604800, 68428800, 830269440, 10897286400, 2324754432000, 640237370572800, 11585247657984000, 221172909834240000, 93666727314800640000, 2068161339110798131200, 47726800133326110720000, 1148978521728221184000000, 28806532937614688256000000
Offset: 1

Views

Author

Rick L. Shepherd, Jun 09 2005

Keywords

Comments

A000142(n)/A000217(n) = n!/(n*(n+1)/2) = 2*(n-1)!/(n+1) is an integer iff n = 1 or n + 1 is composite; i.e., iff n is a term of A060462.

Crossrefs

Cf. A060462 (corresponding k), A000142 (factorials), A000217 (triangular numbers).

Programs

  • Maple
    select(x-> denom(x)=1, [k!/(k*(k+1)/2)$k=1..30])[];  # Alois P. Heinz, Dec 11 2020
  • Mathematica
    Select[Table[(n - 1)!/((n (n - 1))/2), {n, 2, 50}], IntegerQ[#] &] (* Geoffrey Critzer, May 02 2015 *)
  • PARI
    for(n=1,50, r=2*(n-1)!/(n+1); if(denominator(r)==1, print1(r,",")))

Formula

a(m) = 2*(A060462(m)-1)!/(A060462(m)+1) = A000142(A060462(m))/A000217(A060462(m)).

Extensions

Offset corrected by Alois P. Heinz, Dec 11 2020
Previous Showing 71-80 of 4813 results. Next