cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 105 results. Next

A135312 Number of transitive reflexive binary relations R on n labeled elements where |{y : xRy}| <= 2 for all x.

Original entry on oeis.org

1, 1, 4, 13, 62, 311, 1822, 11593, 80964, 608833, 4910786, 42159239, 383478988, 3678859159, 37087880754, 391641822541, 4319860660448, 49647399946049, 593217470459314, 7354718987639959, 94445777492433516, 1254196823154143191, 17198114810490326714, 243191242578584519333
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2007

Keywords

Examples

			a(2) = 4 because there are 4 relations of the given kind for 2 elements: 1R1, 2R2;  1R1, 2R2, 1R2;  1R1, 2R2, 2R1;  1R1, 2R2, 1R2, 2R1.
		

References

  • A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.

Crossrefs

Column k=2 of A135302.

Programs

  • Maple
    u:= proc(n) option remember; add(binomial(n, i)*(n-i)^i, i=0..n) end:
    a:= n-> add(binomial(n, 2*i)*doublefactorial(2*i-1)*u(n-2*i), i=0..iquo(n, 2)):
    seq(a(n), n=0..50);
  • Mathematica
    a[n_] := SeriesCoefficient[Exp[x*Exp[x] + x^2/2], {x, 0, n}]*n!; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 04 2014 *)

Formula

a(n) = Sum_{i=0..floor(n/2)} C(n,2*i) * A006882(2*i-1) * A000248(n-2*i).
a(n) = A135302(n,2).
E.g.f.: exp(x*exp(x) + x^2/2).

A209801 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^2 in the equality sense.

Original entry on oeis.org

1, 2, 7, 30, 152, 878, 5653, 39952, 306419, 2527984, 22277080, 208483014, 2062199125, 21472152822, 234526948183, 2678973711602, 31919113081724, 395750219427590, 5095324584255641, 67996852799627404, 938939425151949211, 13395286474394627364, 197162835188949226772
Offset: 0

Views

Author

Adam Goyt, Mar 13 2012

Keywords

Comments

A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}

Examples

			For n=2 the a(2)=7 solutions are 1^11^1, 1^21^1, 1^21^2, 1^12^1, 1^12^2, 1^22^1, 1^22^2.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(j+1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 29 2019
  • Mathematica
    Table[Sum[BellY[n, k, Range[n] + 1], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n)=n!*polcoeff(exp((1+x)*exp(x +x*O(x^n))-1),n)} \\ Paul D. Hanna, Jun 11 2012

Formula

E.g.f.: exp( (1+x)*exp(x) - 1 ). - Paul D. Hanna, Jun 11 2012
a(n) = Sum_{i=0..n} Sum_{j=0..floor((n-i)/2)} binomial(n, i)*binomial(n-i, j)*(Sum_{p=j..n-i-j} binomial(n-i-j, p)*S(p, j)*j!*B(n-i-j-p)), where B(n) is the n-th Bell number and S(n,k) is the Stirling number of the second kind.
a(n) = Sum_{j=1..n} (j+1) * binomial(n-1,j-1) * a(n-j) for n>0, a(0)=1. - Alois P. Heinz, Aug 29 2019

A292978 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = k! * Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * T(n-1-i,k) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 3, 5, 1, 0, 2, 10, 15, 1, 0, 0, 6, 41, 52, 1, 0, 0, 6, 24, 196, 203, 1, 0, 0, 0, 24, 140, 1057, 877, 1, 0, 0, 0, 24, 60, 870, 6322, 4140, 1, 0, 0, 0, 0, 120, 480, 5922, 41393, 21147, 1, 0, 0, 0, 0, 120, 360, 5250, 45416, 293608, 115975
Offset: 0

Author

Seiichi Manyama, Sep 27 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   1,  1,  0,  0,  0, ...
   2,  3,  2,  0,  0, ...
   5, 10,  6,  6,  0, ...
  15, 41, 24, 24, 24, ...
		

Crossrefs

Columns k=0-4 give: A000110, A000248, A216507, A292889, A292979.
Rows n=0 gives A000012.
Main diagonal gives A000142.
Cf. A292973.

Programs

  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << f(k) * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}
      ary
    end
    def A292978(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A292978(20)

Formula

T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(j! * (n-k*j)!) for k > 0. - Seiichi Manyama, Jul 10 2022

A354550 Expansion of e.g.f. exp( x * exp(x^2/2) ).

Original entry on oeis.org

1, 1, 1, 4, 13, 46, 241, 1156, 6889, 44668, 300241, 2328976, 18390901, 159273544, 1461200833, 13995753136, 144068872081, 1531949061136, 17259159775969, 202543867724608, 2474236899786781, 31633380519660256, 417760492214548561, 5751414293905728064
Offset: 0

Author

Seiichi Manyama, Aug 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x Exp[x^2/2]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 03 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(x^2/2)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(2^k*k!*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/(2^k * k! * (n - 2*k)!).

A354551 Expansion of e.g.f. exp( x * exp(x^3/6) ).

Original entry on oeis.org

1, 1, 1, 1, 5, 21, 61, 211, 1401, 8065, 37241, 240021, 1997821, 13856701, 94418325, 874328911, 8304303281, 69158458881, 658339599601, 7454839614985, 78224066633781, 805961931388741, 9828080719704941, 124199805022959051, 1466207770078872745
Offset: 0

Author

Seiichi Manyama, Aug 18 2022

Keywords

Comments

This sequence is different from A143567.

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x*Exp[x^3/6]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 03 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(x^3/6)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^k/(6^k*k!*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(6^k * k! * (n - 3*k)!).

A059298 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 2.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 12, 1, 5, 80, 90, 20, 1, 6, 240, 540, 240, 30, 1, 7, 672, 2835, 2240, 525, 42, 1, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 10, 11520, 262440, 860160, 787500, 272160, 41160
Offset: 0

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

The inverse triangle is the signed version 1,-2,1,9,-6,1,.. of triangle A061356. - Peter Luschny, Mar 13 2009
T(n,k) is the sum of the products of the cardinality of the blocks (cells) in the set partitions of {1,2,..,n} into exactly k blocks.
From Peter Bala, Jul 22 2014: (Start)
Exponential Riordan array [(1+x)*exp(x), x*exp(x)].
Let M = A093375, the exponential Riordan array [(1+x)*exp(x), x], and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... - see the Example section. (End)
The Bell transform of n+1. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
1;
2, 1;
3, 6, 1;
4, 24, 12, 1; ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1          \/1        \/1        \      /1           \
|2  1       ||0 1      ||0 1      |      |2  1        |
|3  4  1    ||0 2 1    ||0 0 1    |... = |3  6  1     |
|4  9  6 1  ||0 3 4 1  ||0 0 2 1  |      |4 24 12  1  |
|5 16 18 8 1||0 4 9 6 1||0 0 3 4 1|      |5 80 90 20 1|
|...        ||...      ||...      |      |...         | (End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248. A093375.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n+1,k+1)*(k+1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Georg Fischer, Oct 27 2021
  • Mathematica
    t = Transpose[ Table[ Range[0, 11]! CoefficientList[ Series[(x Exp[x])^n/n!, {x, 0, 11}], x], {n, 11}]]; Table[ t[[n, k]], {n, 2, 11}, {k, n - 1}] // Flatten (* or simply *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Table[t[n, k], {n, 10}, {k, n}] // Flatten
  • PARI
    for(n=1, 25, for(k=1, n, print1(binomial(n,k)*k^(n-k), ", "))) \\ G. C. Greubel, Jan 05 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: n+1, 10) # Peter Luschny, Jan 18 2016
    

A133399 Triangle T(n,k)=number of forests of labeled rooted trees with n nodes, containing exactly k trees of height one, all others having height zero (n>=0, 0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 1, 28, 12, 1, 75, 120, 1, 186, 750, 120, 1, 441, 3780, 2100, 1, 1016, 16856, 21840, 1680, 1, 2295, 69552, 176400, 45360, 1, 5110, 272250, 1224720, 705600, 30240, 1, 11253, 1026300, 7692300, 8316000, 1164240, 1, 24564, 3762132, 45018600
Offset: 0

Author

Alois P. Heinz, Nov 24 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,     2;
  1,     9;
  1,    28,     12;
  1,    75,    120;
  1,   186,    750,     120;
  1,   441,   3780,    2100;
  1,  1016,  16856,   21840,   1680;
  1,  2295,  69552,  176400,  45360;
  1,  5110, 272250, 1224720, 705600, 30240;
  ...
		

Crossrefs

Columns k=1,2 give: A058877, A133386.
Row sums give: A000248.
T(2n,n) = A001813(n), T(2n+1,n) = A002691(n).
Reading the table by diagonals gives triangle A198204. - Peter Bala, Jul 31 2012
Cf. A235596.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(k)*StirlingSecond(n-k+1,k+1): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 06 2019
  • Maple
    T:= (n,k)-> binomial(n,k)*k!*Stirling2(n-k+1,k+1): for n from 0 to 10 do lprint(seq(T(n, k), k=0..floor(n/2))) od;
  • Mathematica
    nn=12;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x (Exp[x]-1)] Exp[x],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k!*StirlingS2[n-k+1, k+1]; Table[t[n, k], {n, 0, 12}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)

Formula

T(n,k) = C(n,k) * k! * stirling2(n-k+1,k+1).
E.g.f.: exp(y*x*(exp(x)-1))*exp(x). - Geoffrey Critzer, Feb 09 2013
Sum_{k=1..floor(n/2)} T(n,k) = A235596(n+1). - Alois P. Heinz, Jun 21 2019

A275707 Number of partial functions f:{1,2,...,n}->{1,2,...,n} such that every element in the domain of definition of f is mapped to a fixed point or to an element that is undefined by f.

Original entry on oeis.org

1, 2, 8, 38, 216, 1402, 10156, 80838, 698704, 6498674, 64579284, 681642238, 7605025720, 89318058858, 1100376445564, 14176837311158, 190498308591264, 2663482511782114, 38667106019619748, 581765160424218606, 9055862445043643656, 145619330650420134362
Offset: 0

Author

Geoffrey Critzer, Aug 06 2016

Keywords

Examples

			G.f. = 1 + 2*x + 8*x^2 + 38*x^3 + 216*x^4 + 1402*x^5 + 10156*x^6 + ...
a(2) = 8 because there are 9 = A000169(3) partial functions on a set with 2 elements and all of them have the stated property except 1->2,2->1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n, k)*add(binomial(n-k, f)*
            (f+k)^(n-k-f), f=0..n-k), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 07 2016
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[ Exp[z Exp[z]]^2, {z, 0, nn}], z]
    Table[Sum[BellY[n, k, 2 Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace(exp(2*x*exp(x)))) \\ Joerg Arndt, Nov 10 2016
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    a(n) = sum(k=0, n, 2^k*k^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Jul 04 2022

Formula

E.g.f.: A(x)^2 = exp(2*B(x)) where A(x) is the e.g.f. for A000248 and B(x) is the e.g.f. for A000027.
E.g.f.: exp(2*x*exp(x)). - Joerg Arndt, Nov 10 2016
a(0) = 1; a(n) = Sum_{k=1..n} 2*k*binomial(n-1,k-1)*a(n-k). - Ilya Gutkovskiy, Nov 24 2017
From Seiichi Manyama, Jul 04 2022: (Start)
G.f.: Sum_{k>=0} (2 * x)^k/(1 - k*x)^(k+1).
a(n) = Sum_{k=0..n} 2^k * k^(n-k) * binomial(n,k). (End)
a(n) ~ n^(n + 1/2) * exp(2*r*exp(r) - r/2 - n) / (sqrt(2*(1 + 3*r + r^2)) * r^(n + 1/2)), where r = 2*w - 1/(2*w) + 5/(8*w^2) - 19/(24*w^3) + 209/(192*w^4) - 763/(480*w^5) + 4657/(1920*w^6) - 6855/(1792*w^7) + 199613/(32256*w^8) + ... and w = LambertW(sqrt(n)/2^(3/2)). - Vaclav Kotesovec, Jul 06 2022

A336227 a(0) = 1; a(n) = n * Sum_{k=0..n-1} binomial(n-1,k)^2 * a(k).

Original entry on oeis.org

1, 1, 4, 27, 292, 4425, 89106, 2280901, 71928872, 2728450017, 122145511510, 6354868381521, 379376236939404, 25710543779239501, 1960001963705060926, 166753195643254805565, 15724259680648667902096, 1633462474351643785483457, 185931510605274506452763166
Offset: 0

Author

Ilya Gutkovskiy, Jul 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = n Sum[Binomial[n - 1, k]^2 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[Exp[Sqrt[x] BesselI[1, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

a(n) = (n!)^2 * [x^n] exp(sqrt(x) * BesselI(1,2*sqrt(x))).

A360782 Expansion of Sum_{k>=0} x^k / (1 - k*x^2)^(k+1).

Original entry on oeis.org

1, 1, 1, 3, 7, 16, 45, 125, 363, 1127, 3561, 11696, 39727, 138113, 494213, 1811075, 6784115, 25985928, 101520833, 404305549, 1640002039, 6767576175, 28395916893, 121048681024, 523902418555, 2300906314849, 10248029334297, 46266088140291
Offset: 0

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n-k,k] * (n-2*k)^k, {k,0,n/2}], {n,1,30}]] (* Vaclav Kotesovec, Feb 21 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^2)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^k*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n-k,k).
Previous Showing 31-40 of 105 results. Next