A000056
Order of the group SL(2,Z_n).
Original entry on oeis.org
1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880, 3072, 4896, 3888, 6840, 5760, 8064, 7920, 12144, 9216, 15000, 13104, 17496, 16128, 24360, 17280, 29760, 24576, 31680, 29376, 40320, 31104, 50616, 41040, 52416, 46080, 68880, 48384, 79464
Offset: 1
G.f. = x + 6*x^2 + 24*x^3 + 48*x^4 + 120*x^5 + 144*x^6 + 336*x^7 +384*x^8 + ...
a(2) = 6 because [0, 1; 1, 0], [0, 1; 1, 1], [1, 0; 0, 1], [1, 0; 1, 1], [1, 1; 0, 1], [1, 1; 1, 0] are the six matrices modulo 2 with determinant 1 modulo 2.
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 46.
- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 75.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- Wikipedia, Congruence subgroup.
- Index to divisibility sequences
- Index entries for sequences related to groups
Cf.
A007434 ([SL_2(Z) : Gamma_1(n)]),
A001615 ([SL_2(Z) : Gamma_0(n)]).
-
proc(n) local b,d: b := n^3: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
-
(* From Olivier Gérard, Aug 15 1997: (Start) *)
Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1-1/#2^2), #1 ]&, n^3, Range[ n ] ], {n, 1, 35} ]
Table[ n^3 Times@@(1-1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 35} ] (* End *)
a[ n_] := If[ n<1, 0, n Sum[ d^2 MoebiusMu[ n/d ], {d, Divisors @ n}]]; (* Michael Somos, Nov 15 2011 *)
Table[ n DirichletConvolve[ MoebiusMu[m], m^2, m, n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
a[n_] := #.RotateLeft[#] & @ Sort[Mod[ Outer[Times, Range[n], Range[n]], n] // Flatten // Tally][[;; , 2]]
Table[a[n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
-
{a(n) = if( n<1, 0, n * sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 05 2008 */
-
from math import prod
from sympy import factorint
def A000056(n): return prod((p+1)*(p-1)*p**(3*e-2) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A064767
Order of automorphism group of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).
Original entry on oeis.org
1, 168, 11232, 86016, 1488000, 1886976, 33784128, 44040192, 221079456, 249984000, 2124276000, 966131712, 9726417792, 5675733504, 16713216000, 22548578304, 111203278848, 37141348608, 304812862560, 127991808000
Offset: 1
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 24 2001
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29 , Iss. 1, 2005.
- Index entries for sequences related to groups.
-
a[n_] := n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]]; a[1] = 1; Array[a, 20] (* Jean-François Alcover, Mar 21 2017 *)
-
a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k))); \\ Michel Marcus, Jun 30 2015
-
a(n,f=factor(n))=prod(i=1,#f~, ((1 - 1/f[i,1]^3)*(1 - 1/f[i,1]^2)*(1 - 1/f[i,1])))*n^9 \\ Charles R Greathouse IV, Mar 04 2025
-
from math import prod
from sympy import factorint
def A064767(n): return prod(p**(3*(3*e-2))*(p*(p*(p**2*(p*(p-1)-1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A316622
Array read by antidiagonals: T(n,k) is the order of the group GL(n,Z_k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 2, 48, 168, 1, 1, 4, 96, 11232, 20160, 1, 1, 2, 480, 86016, 24261120, 9999360, 1, 1, 6, 288, 1488000, 1321205760, 475566474240, 20158709760, 1, 1, 4, 2016, 1886976, 116064000000, 335522845163520, 84129611558952960, 163849992929280, 1
Offset: 0
Array begins:
=================================================================
n\k| 1 2 3 4 5 6
---+-------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 2 4 2 ...
2 | 1 6 48 96 480 288 ...
3 | 1 168 11232 86016 1488000 1886976 ...
4 | 1 20160 24261120 1321205760 116064000000 489104179200 ...
5 | 1 9999360 ...
...
-
T:=function(n,k) if k=1 or n=0 then return 1; else return Order(GL(n, Integers mod k)); fi; end;
for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
-
T[, 1] = T[0, ] = 1; T[n_, k_] := T[n, k] = Module[{f = FactorInteger[k], p, e}, If[Length[f] == 1, {p, e} = f[[1]]; (p^e)^(n^2)* Product[(1 - 1/p^j), {j, 1, n}], Times @@ (T[n, Power @@ #]& /@ f)]];
Table[T[n - k + 1, k], {n, 0, 8}, {k, n + 1, 1, -1}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)
-
T(n,k)={my(f=factor(k)); k^(n^2) * prod(i=1, #f~, my(p=f[i,1]); prod(j=1, n, (1 - p^(-j))))}
A059238
Orders of the finite groups GL_2(K) when K is a finite field with q = A246655(n) elements.
Original entry on oeis.org
6, 48, 180, 480, 2016, 3528, 5760, 13200, 26208, 61200, 78336, 123120, 267168, 374400, 511056, 682080, 892800, 1014816, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 11908560, 13615200, 16511040, 19845936, 25048800, 28003968
Offset: 1
Avi Peretz (njk(AT)netvision.net.il), Jan 21 2001
a(4) = 480 because A246655(4) = 5, and (5^2-1)*(5^2-5) = 480.
For the order of SL_2(K) see
A329119.
-
with(numtheory): for n from 2 to 400 do if nops(ifactors(n)[2]) = 1 then printf(`%d,`, (n+1)*(n)*(n-1)^2) fi: od:
-
nn=30;a=Take[Union[Sort[Flatten[Table[Table[Prime[m]^k,{m,1,nn}],{k,1,nn}]]]],nn];Table[(q^2-1)(q^2-q),{q,a}] (* Geoffrey Critzer, Apr 20 2013 *)
-
[(p+1)*p*(p-1)^2 | p <- [1..200], isprimepower(p)] \\ Jianing Song, Nov 05 2019
A305186
Number of invertible 4 X 4 matrices mod n.
Original entry on oeis.org
1, 20160, 24261120, 1321205760, 116064000000, 489104179200, 27811094169600, 86586540687360, 1044361663787520, 2339850240000000, 41393302251840000, 32053931488051200, 610296923230525440, 560671658459136000, 2815842631680000000, 5674535530486824960
Offset: 1
- Jianing Song, Table of n, a(n) for n = 1..10000
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29, Iss. 1, 2005.
-
{1}~Join~Array[#^16*Product[(1 - 1/p^4) (1 - 1/p^3) (1 - 1/p^2) (1 - 1/p), {p, FactorInteger[#][[All, 1]]}] &, 12, 2] (* Michael De Vlieger, May 27 2018 *)
-
a(n)=my(f=factor(n)[, 1]); n^16*prod(i=1, #f, (1-1/f[i]^4)*(1-1/f[i]^3)*(1-1/f[i]^2)*(1-1/f[i]))
-
from math import prod
from sympy import factorint
def A305186(n): return prod(p**((e<<3)-5<<1)*(p*(p*(p**3*(p**3*(p*(p-1)-1)+2)-1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A316566
Triangle read by rows: T(n,k) is the number of elements of the group GL(2, Z(n)) with order k, 1 <= k <= A316565(n).
Original entry on oeis.org
1, 1, 3, 2, 1, 13, 8, 6, 0, 8, 0, 12, 1, 27, 8, 36, 0, 24, 1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80, 1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1, 57, 170, 42, 0, 618, 48, 84, 0, 0, 0, 84
Offset: 1
Triangle begins:
1
1, 3, 2
1, 13, 8, 6, 0, 8, 0, 12
1, 27, 8, 36, 0, 24
1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80
1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24
...
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, my(t=MatOrder(M)); while(#L
A011785
Number of 3 X 3 matrices whose determinant is 1 mod n.
Original entry on oeis.org
1, 168, 5616, 43008, 372000, 943488, 5630688, 11010048, 36846576, 62496000, 212427600, 241532928, 810534816, 945955584, 2089152000, 2818572288, 6950204928, 6190224768, 16934047920, 15998976000, 31621943808, 35687836800
Offset: 1
Benjamin T. Love (benlove(AT)preston.polaristel.net)
-
a[n_] := (n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]])/EulerPhi[n]; a[1] = 1; Array[a, 30] (* Jean-François Alcover, Mar 21 2017 *)
-
a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k)))/eulerphi(n); \\ Michel Marcus, Jun 30 2015
-
from math import prod
from sympy import factorint
def A011785(n): return prod(p**((e<<3)-5)*(p**2*(p*(p-1)*(p+1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A011786
Number of 4 X 4 matrices whose determinant is 1 mod n.
Original entry on oeis.org
1, 20160, 12130560, 660602880, 29016000000, 244552089600, 4635182361600, 21646635171840, 174060277297920, 584962560000000, 4139330225184000, 8013482872012800, 50858076935877120, 93445276409856000, 351980328960000000, 709316941310853120, 2851903720876769280
Offset: 1
benlove(AT)preston.polaristel.net (Benjamin T. Love)
-
f[p_, e_] := (1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2); a[1] = 1; a[n_] := n^15 * Times @@ f @@@ FactorInteger[n]; Array[a, 17] (* Amiram Eldar, Oct 23 2022 *)
-
a(n) = f = factor(n); n^16/eulerphi(n) * prod(i=1, #f~, (1-1/f[i,1]^4)*(1-1/f[i,1]^3)*(1-1/f[i,1]^2)*(1-1/f[i,1])); \\ Michel Marcus, Sep 02 2013
-
from math import prod
from sympy import factorint
def A011786(n): return prod(p**(3*(5*e-3))*(p**2*(p*(p*(p*(p*(p*(p-1)*(p+1)-1)-1)+1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A316565
Maximum order of an element of the general linear group GL(2, Z(n)).
Original entry on oeis.org
1, 3, 8, 6, 24, 24, 48, 12, 24, 60, 120, 24, 168, 48, 60, 24, 288, 24, 360, 60, 168, 330, 528, 24, 120, 168, 72, 84, 840, 120, 960, 48, 440, 816, 420, 36, 1368, 360, 312, 60, 1680, 168, 1848, 330, 180, 1518, 2208, 48, 336, 300, 816, 168, 2808, 72, 1320, 168
Offset: 1
-
Concatenation([1], List([2..10], n->Maximum(List(GL(2, Integers mod n), Order))));
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, m=max(m, MatOrder(M))))))); m}
A070932
Possible number of units in a finite (commutative or non-commutative) ring.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 36, 40, 42, 44, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 63, 64, 66, 70, 72, 78, 80, 81, 82, 84, 88, 90, 92, 93, 96, 98, 100
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002
A282572 is the subsequence of odd terms.
-
max = 100; A000010 = EulerPhi[ Range[2*max]] // Union // Select[#, # <= max &] &; A181062 = Select[ Range[max], Length[ FactorInteger[#]] == 1 &] - 1; FixedPoint[ Select[ Outer[ Times, #, # ] // Flatten // Union, # <= max &] &, Union[A000010, A181062] ] (* Jean-François Alcover, Sep 10 2013 *)
-
list(lim)=my(P=1, q, v, u=List()); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2, sqrtint(lim\1+1), P=p; while((P*=p) <= lim+1, listput(u, P-1))); v=vecsort(concat(v, Vec(u)), , 8); u=List([0]); while(#u, v=vecsort(concat(v, Vec(u)),,8); u=List(); for(i=3,#v, for(j=i,#v,P=v[i]*v[j]; if(P>lim,break); if(!vecsearch(v, P), listput(u, P))))); v \\ Charles R Greathouse IV, Jan 08 2013
Comments