cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A000056 Order of the group SL(2,Z_n).

Original entry on oeis.org

1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880, 3072, 4896, 3888, 6840, 5760, 8064, 7920, 12144, 9216, 15000, 13104, 17496, 16128, 24360, 17280, 29760, 24576, 31680, 29376, 40320, 31104, 50616, 41040, 52416, 46080, 68880, 48384, 79464
Offset: 1

Views

Author

Keywords

Comments

The number of equivalence classes of matrices modulo n of integer matrices with determinant 1 modulo n. - Michael Somos, Mar 20 2004
24 | a(n) if n > 2. - Michael Somos, Nov 15 2011
A divisibility sequence, that is, a(n) divides a(n*m) for all positive integers n and m. - Michael Somos, Jan 01 2017
The group SL(2,Z_2) is isomorphic to the symmetric group S_3. - Bernard Schott, Mar 15 2020
a(n) = [SL_2(Z) : Gamma(n)], index of the principal congruence subgroup of the special linear group over integers. - Andrey Zabolotskiy, Feb 14 2025

Examples

			G.f. = x + 6*x^2 + 24*x^3 + 48*x^4 + 120*x^5 + 144*x^6 + 336*x^7 +384*x^8 + ...
a(2) = 6 because [0, 1; 1, 0], [0, 1; 1, 1], [1, 0; 0, 1], [1, 0; 1, 1], [1, 1; 0, 1], [1, 1; 1, 0] are the six matrices modulo 2 with determinant 1 modulo 2.
		

References

  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 46.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 75.

Crossrefs

Cf. A001766.
Row n=2 of A316623.
Row sums of A316564.
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).
Cf. A011785 (SL(3,Z_n)), A011786 (SL(4,Z_n)).
Cf. A007434 ([SL_2(Z) : Gamma_1(n)]), A001615 ([SL_2(Z) : Gamma_0(n)]).

Programs

  • Maple
    proc(n) local b,d: b := n^3: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
  • Mathematica
    (* From Olivier Gérard, Aug 15 1997: (Start) *)
    Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1-1/#2^2), #1 ]&, n^3, Range[ n ] ], {n, 1, 35} ]
    Table[ n^3 Times@@(1-1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 35} ]  (* End *)
    a[ n_] := If[ n<1, 0, n Sum[ d^2 MoebiusMu[ n/d ], {d, Divisors @ n}]]; (* Michael Somos, Nov 15 2011 *)
    Table[ n DirichletConvolve[ MoebiusMu[m], m^2, m, n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
    a[n_] := #.RotateLeft[#] & @ Sort[Mod[ Outer[Times, Range[n], Range[n]], n] // Flatten // Tally][[;; , 2]]
    Table[a[n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 05 2008 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A000056(n): return prod((p+1)*(p-1)*p**(3*e-2) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = (p^2 - 1)*p^(3e-2). - David W. Wilson, Aug 01 2001
a(n) = A000252(n)/phi(n), where phi is Euler totient function (cf. A000010). - Vladeta Jovovic, Oct 30 2001
a(n) = n*Sum_{d|n} d^2*mu(n/d) = n*A007434(n) where A007434 is the Jordan function J_2(n). - Benoit Cloitre, May 03 2003
a(n) = A007434(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = A007434(n^3)/n^3. - Enrique Pérez Herrero, Dec 19 2010
Dirichlet g.f. zeta(s-3)/zeta(s-1). - R. J. Mathar, Feb 27 2011
A046970(n) divides a(n). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ n^4 / (4*Zeta(3)). - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2 / ((p-1)^2 * (p+1) * (p^2 + p + 1))) = 1.258448350408311046314826069717731136828991478925039589864338603650639811... - Vaclav Kotesovec, Sep 19 2020

Extensions

More terms from Vaclav Kotesovec, Sep 19 2020

A064767 Order of automorphism group of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 168, 11232, 86016, 1488000, 1886976, 33784128, 44040192, 221079456, 249984000, 2124276000, 966131712, 9726417792, 5675733504, 16713216000, 22548578304, 111203278848, 37141348608, 304812862560, 127991808000
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 24 2001

Keywords

Comments

Also number of 3 X 3 invertible matrices over the ring Z/nZ. - Max Alekseyev, Nov 02 2007
Order of the group GL(3,Z_n). For n > 2, a(n) is divisible by 96. - Jianing Song, Nov 24 2018

Crossrefs

Row n=3 of A316622.
Cf. A000252 (GL(2,Z_n)), A305186 (GL(4,Z_n)).
Cf. A000056 (SL(2,Z_n)), A011785 (SL(3,Z_n)), A011786 (SL(4,Z_n)).

Programs

  • Mathematica
    a[n_] := n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]]; a[1] = 1; Array[a, 20] (* Jean-François Alcover, Mar 21 2017 *)
  • PARI
    a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k))); \\ Michel Marcus, Jun 30 2015
    
  • PARI
    a(n,f=factor(n))=prod(i=1,#f~, ((1 - 1/f[i,1]^3)*(1 - 1/f[i,1]^2)*(1 - 1/f[i,1])))*n^9 \\ Charles R Greathouse IV, Mar 04 2025
    
  • Python
    from math import prod
    from sympy import factorint
    def A064767(n): return prod(p**(3*(3*e-2))*(p*(p*(p**2*(p*(p-1)-1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

a(n) = phi(n)*A011785(n). - Vladeta Jovovic, Oct 29 2001
a(n) = n^9*Product_{primes p dividing n} ((1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)). This also gives a formula for A011785.
Multiplicative with a(p^e) = p^(9*e-6)*(p^3 - 1)*(p^2 - 1)*(p - 1). - Vladeta Jovovic, Nov 18 2001
Sum_{k=1..n} a(k) ~ c * n^10, where c = (1/10) * Product_{p prime} ((p^7 - p^5 - p^4 + p^2 + p - 1)/p^7) = 0.05123382571... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from Vladeta Jovovic, Nov 18 2001

A316622 Array read by antidiagonals: T(n,k) is the order of the group GL(n,Z_k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 2, 48, 168, 1, 1, 4, 96, 11232, 20160, 1, 1, 2, 480, 86016, 24261120, 9999360, 1, 1, 6, 288, 1488000, 1321205760, 475566474240, 20158709760, 1, 1, 4, 2016, 1886976, 116064000000, 335522845163520, 84129611558952960, 163849992929280, 1
Offset: 0

Views

Author

Andrew Howroyd, Jul 08 2018

Keywords

Comments

All rows are multiplicative.
Equivalently, the number of invertible n X n matrices mod k.
Also, for k prime (but not higher prime powers) the number of nonsingular n X n matrices over GF(k).
For k >= 2, n! divides T(n,k) since the subgroup of GL(n,k) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). Note that a permutation matrix is an orthogonal matrix, hence having determinant +-1. - Jianing Song, Oct 29 2022

Examples

			Array begins:
=================================================================
n\k| 1       2         3          4             5           6
---+-------------------------------------------------------------
0  | 1       1         1          1            1            1 ...
1  | 1       1         2          2            4            2 ...
2  | 1       6        48         96          480          288 ...
3  | 1     168     11232      86016      1488000      1886976 ...
4  | 1   20160  24261120 1321205760 116064000000 489104179200 ...
5  | 1 9999360  ...
...
		

Crossrefs

Rows n=2..4 are A000252, A064767, A305186.
Columns k=2..7 are A002884, A053290, A065128, A053292, A065498, A053293.
Cf. A053291 (GF(4)), A052496 (GF(8)), A052497 (GF(9)).
Cf. A316623.

Programs

  • GAP
    T:=function(n,k) if k=1 or n=0 then return 1; else return Order(GL(n, Integers mod k)); fi; end;
    for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
    
  • Mathematica
    T[, 1] = T[0, ] = 1; T[n_, k_] := T[n, k] = Module[{f = FactorInteger[k], p, e}, If[Length[f] == 1, {p, e} = f[[1]]; (p^e)^(n^2)* Product[(1 - 1/p^j), {j, 1, n}], Times @@ (T[n, Power @@ #]& /@ f)]];
    Table[T[n - k + 1, k], {n, 0, 8}, {k, n + 1, 1, -1}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)
  • PARI
    T(n,k)={my(f=factor(k)); k^(n^2) * prod(i=1, #f~, my(p=f[i,1]); prod(j=1, n, (1 - p^(-j))))}

Formula

T(n,p^e) = (p^e)^(n^2) * Product_{j=1..n} (1 - 1/p^j) for prime p.

A059238 Orders of the finite groups GL_2(K) when K is a finite field with q = A246655(n) elements.

Original entry on oeis.org

6, 48, 180, 480, 2016, 3528, 5760, 13200, 26208, 61200, 78336, 123120, 267168, 374400, 511056, 682080, 892800, 1014816, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 11908560, 13615200, 16511040, 19845936, 25048800, 28003968
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Jan 21 2001

Keywords

Comments

From Jianing Song, Nov 06 2019: (Start)
GL_2(K) means the group of invertible 2 X 2 matrices A over K.
In general, let R be any commutative ring with unity, GL_n(R) be the group of n X n matrices A over R such that det(A) != 0 and SL_n(R) be the group of n X n matrices A over R such that det(A) = 1, then GL_n(R)/SL_n(R) = R* is the multiplicative group of R. This is because if we define f(M) = det(M) for M in GL_n(R), then f is a surjective homomorphism from GL_n(K) to R*, and SL_n(R) is its kernel. Thus |GL_n(R)|/|SL_n(R)| = |R*|; if K is a finite field, then |GL_n(R)|/|SL_n(R)| = |K|-1. (End)

Examples

			a(4) = 480 because A246655(4) = 5, and (5^2-1)*(5^2-5) = 480.
		

Crossrefs

Subsequence of A047927.
Cf. A246655, A000252 (order of GL_2(Z_n)).
For the order of SL_2(K) see A329119.

Programs

  • Maple
    with(numtheory): for n from 2 to 400 do if nops(ifactors(n)[2]) = 1 then printf(`%d,`, (n+1)*(n)*(n-1)^2) fi: od:
  • Mathematica
    nn=30;a=Take[Union[Sort[Flatten[Table[Table[Prime[m]^k,{m,1,nn}],{k,1,nn}]]]],nn];Table[(q^2-1)(q^2-q),{q,a}]  (* Geoffrey Critzer, Apr 20 2013 *)
  • PARI
    [(p+1)*p*(p-1)^2 | p <- [1..200], isprimepower(p)] \\ Jianing Song, Nov 05 2019

Formula

If the finite field K has p^m elements, then the order of the group GL_2(K) is (p^(2m)-1)*(p^(2m)-p^m) = (p^m+1)*(p^m)*(p^m-1)^2.
a(n) = A047927(A246655(n)+1). - Jianing Song, Nov 05 2019
a(n) = (A246655(n)-1)*A329119(n). - Jianing Song, Nov 06 2019

Extensions

More terms from James Sellers, Jan 22 2001
Offset corrected by Jianing Song, Nov 05 2019

A305186 Number of invertible 4 X 4 matrices mod n.

Original entry on oeis.org

1, 20160, 24261120, 1321205760, 116064000000, 489104179200, 27811094169600, 86586540687360, 1044361663787520, 2339850240000000, 41393302251840000, 32053931488051200, 610296923230525440, 560671658459136000, 2815842631680000000, 5674535530486824960
Offset: 1

Views

Author

Jianing Song, May 27 2018

Keywords

Comments

Order of the group GL(4,Z_n).
Order of the automorphism group of the group (C_n)^4, where C_n is the cyclic group of order n.
For n > 2, a(n) is divisible by 23040.

Crossrefs

Row n=4 of A316622.
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)).
Cf. A000056 (SL(2,Z_n)), A011785 (SL(3,Z_n)), A011786 (SL(4,Z_n)).
Cf. A000010.

Programs

  • Mathematica
    {1}~Join~Array[#^16*Product[(1 - 1/p^4) (1 - 1/p^3) (1 - 1/p^2) (1 - 1/p), {p, FactorInteger[#][[All, 1]]}] &, 12, 2] (* Michael De Vlieger, May 27 2018 *)
  • PARI
    a(n)=my(f=factor(n)[, 1]); n^16*prod(i=1, #f, (1-1/f[i]^4)*(1-1/f[i]^3)*(1-1/f[i]^2)*(1-1/f[i]))
    
  • Python
    from math import prod
    from sympy import factorint
    def A305186(n): return prod(p**((e<<3)-5<<1)*(p*(p*(p**3*(p**3*(p*(p-1)-1)+2)-1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = (p - 1)*(p^2 - 1)*(p^3 - 1)*(p^4 - 1)*p^(16*e-10).
a(n) = n^16*Product_{primes p dividing n} (1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p).
a(n) = phi(n)*A011786(n) = A000010(n)*A011786(n).
Sum_{k=1..n} a(k) ~ c * n^17, where c = (1/17) * Product_{p prime} ((p^11 - p^9 - p^8 + 2*p^5 - p^2 - p + 1)/p^11) = 0.02958150406... . - Amiram Eldar, Oct 23 2022

A316566 Triangle read by rows: T(n,k) is the number of elements of the group GL(2, Z(n)) with order k, 1 <= k <= A316565(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 13, 8, 6, 0, 8, 0, 12, 1, 27, 8, 36, 0, 24, 1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80, 1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1, 57, 170, 42, 0, 618, 48, 84, 0, 0, 0, 84
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Comments

For coprime p,q the group GL(p*q, Z(n)) is isomorphic to the direct product of the two groups GL(p, Z(n)) and GL(q, Z(n)).

Examples

			Triangle begins:
  1
  1, 3, 2
  1, 13, 8, 6, 0, 8, 0, 12
  1, 27, 8, 36, 0, 24
  1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80
  1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24
  ...
		

Crossrefs

Row sums are A000252.
Column 2 is A066947.

Programs

  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, my(t=MatOrder(M)); while(#L
    				

Formula

T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) * A316584(n,k).

A011785 Number of 3 X 3 matrices whose determinant is 1 mod n.

Original entry on oeis.org

1, 168, 5616, 43008, 372000, 943488, 5630688, 11010048, 36846576, 62496000, 212427600, 241532928, 810534816, 945955584, 2089152000, 2818572288, 6950204928, 6190224768, 16934047920, 15998976000, 31621943808, 35687836800
Offset: 1

Views

Author

Benjamin T. Love (benlove(AT)preston.polaristel.net)

Keywords

Comments

Order of the group SL(3,Z_n). For n > 2, a(n) is divisible by 48. - Jianing Song, Nov 24 2018

Crossrefs

Cf. A000056 (SL(2,Z_n)), A011786 (SL(4,Z_n)).
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).

Programs

  • Mathematica
    a[n_] := (n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]])/EulerPhi[n]; a[1] = 1; Array[a, 30] (* Jean-François Alcover, Mar 21 2017 *)
  • PARI
    a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k)))/eulerphi(n); \\ Michel Marcus, Jun 30 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A011785(n): return prod(p**((e<<3)-5)*(p**2*(p*(p-1)*(p+1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = p^(8*e-5)*(p^3 - 1)*(p^2 - 1). - Vladeta Jovovic, Nov 18 2001
For a formula see A064767.
a(n) = A046970(n)*A063453(n)*A000578(n)*A003557(n)^5. - R. J. Mathar, Mar 30 2011
a(n) = A064767(n)/phi(n). - Jianing Song, Nov 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^5/((p-1)^3 * (p+1)^2 * (p^2 + p + 1) * (p^6 + p^4 + p^2 + 1))) = 1.0061577672748872278355775942508642214184417621389767880397578015151659965... - Vaclav Kotesovec, Sep 19 2020
Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 - (p^3 + p^2 -1)/p^6) = 0.08630488937... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from John W. Layman, Feb 16 2001
Further terms from Vladeta Jovovic, Oct 29 2001

A011786 Number of 4 X 4 matrices whose determinant is 1 mod n.

Original entry on oeis.org

1, 20160, 12130560, 660602880, 29016000000, 244552089600, 4635182361600, 21646635171840, 174060277297920, 584962560000000, 4139330225184000, 8013482872012800, 50858076935877120, 93445276409856000, 351980328960000000, 709316941310853120, 2851903720876769280
Offset: 1

Views

Author

benlove(AT)preston.polaristel.net (Benjamin T. Love)

Keywords

Comments

Order of the group SL(4,Z_n). For n > 2, a(n) is divisible by 11520. - Jianing Song, Nov 24 2018

Crossrefs

Cf. A000056 (SL(2,Z_n)), A011785 (SL(3,Z_n)).
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).
Cf. A000010.

Programs

  • Mathematica
    f[p_, e_] := (1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2); a[1] = 1; a[n_] := n^15 * Times @@ f @@@ FactorInteger[n]; Array[a, 17] (* Amiram Eldar, Oct 23 2022 *)
  • PARI
    a(n) = f = factor(n); n^16/eulerphi(n) * prod(i=1, #f~, (1-1/f[i,1]^4)*(1-1/f[i,1]^3)*(1-1/f[i,1]^2)*(1-1/f[i,1])); \\ Michel Marcus, Sep 02 2013
    
  • Python
    from math import prod
    from sympy import factorint
    def A011786(n): return prod(p**(3*(5*e-3))*(p**2*(p*(p*(p*(p*(p*(p-1)*(p+1)-1)-1)+1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

a(n) = (n^16/phi(n))*Product_{primes p dividing n} ((1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)). Multiplicative with a(p^e) = p^(15*e-9)*(p^4 - 1)*(p^3 - 1)*(p^2 - 1). - Vladeta Jovovic, Nov 18 2001
a(n) = n^15*Product_{primes p dividing n} ((1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2)) = A305186(n)/phi(n). - Jianing Song, Nov 24 2018
Sum_{k=1..n} a(k) ~ c * n^16, where c = (1/16) * Product_{p prime} ((p^10 - p^7 - p^6 - p^5 + p^4 + p^3 + p^2 - 1)/p^10) = 0.04715136234... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from Vladeta Jovovic, Nov 18 2001

A316565 Maximum order of an element of the general linear group GL(2, Z(n)).

Original entry on oeis.org

1, 3, 8, 6, 24, 24, 48, 12, 24, 60, 120, 24, 168, 48, 60, 24, 288, 24, 360, 60, 168, 330, 528, 24, 120, 168, 72, 84, 840, 120, 960, 48, 440, 816, 420, 36, 1368, 360, 312, 60, 1680, 168, 1848, 330, 180, 1518, 2208, 48, 336, 300, 816, 168, 2808, 72, 1320, 168
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Crossrefs

Row lengths of A316566.

Programs

  • GAP
    Concatenation([1], List([2..10], n->Maximum(List(GL(2, Integers mod n), Order))));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, m=max(m, MatOrder(M))))))); m}

Formula

Conjecture: a(p) = (p-1)*(p+1) for prime p.
From Robert Israel, Dec 19 2019: (Start)
The conjecture is true. In fact for T in GL(2,Z(p)), the order of T divides p*(p-1) if the characteristic polynomial of T splits over Z(p) and p^2-1 if it doesn't; moreover, if T is the companion matrix of the minimal polynomial of a primitive element of GF(p^2), the order is p^2-1.
a(p^k) <= (p^2-1) p^(k-1).
If m and n are coprime, a(m*n) <= a(m)*a(n). (End)

A070932 Possible number of units in a finite (commutative or non-commutative) ring.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 36, 40, 42, 44, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 63, 64, 66, 70, 72, 78, 80, 81, 82, 84, 88, 90, 92, 93, 96, 98, 100
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002

Keywords

Comments

This is a list of the numbers of units in R where R ranges over all finite commutative or non-commutative rings.
By considering the ring Z_n and the finite fields GF(q) this sequence contains the values of the Euler function phi(n) (A000010) and prime powers - 1 (A181062). By taking direct product of rings, if n and m belong to the sequence then so does m*n.
Eric M. Rains has shown that these rules generate all terms of this sequence. More precisely, he shows this sequence (with 0 removed) is the multiplicative monoid generated by all numbers of the form q^n-q^{n-1} for n >= 1 and q a prime power (see Rains link).
Since the number of units of F_q[X]/(X^n) is q^n - q^(n-1), restricting to finite commutative rings gives the same sequence. A296241, which is a proper supersequence, allows the ring R to be infinite. - Jianing Song, Dec 24 2021

Crossrefs

A000252 is a subsequence.
A282572 is the subsequence of odd terms.
Proper subsequence of A296241.
The main entries concerned with the enumeration of rings are A027623, A037234, A037291, A037289, A038538, A186116.

Programs

  • Mathematica
    max = 100; A000010 = EulerPhi[ Range[2*max]] // Union // Select[#, # <= max &] &; A181062 = Select[ Range[max], Length[ FactorInteger[#]] == 1 &] - 1; FixedPoint[ Select[ Outer[ Times, #, # ] // Flatten // Union, # <= max &] &, Union[A000010, A181062] ] (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    list(lim)=my(P=1, q, v, u=List()); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2, sqrtint(lim\1+1), P=p; while((P*=p) <= lim+1, listput(u, P-1))); v=vecsort(concat(v, Vec(u)), , 8); u=List([0]); while(#u, v=vecsort(concat(v, Vec(u)),,8); u=List(); for(i=3,#v, for(j=i,#v,P=v[i]*v[j]; if(P>lim,break); if(!vecsearch(v, P), listput(u, P))))); v \\ Charles R Greathouse IV, Jan 08 2013

Extensions

Entry revised by N. J. A. Sloane, Jan 06 2013, Jan 08 2013
Definition clarified by Jianing Song, Dec 24 2021
Previous Showing 11-20 of 32 results. Next