cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 90 results. Next

A130191 Square of the Stirling2 matrix A048993.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 15, 32, 12, 1, 0, 52, 175, 110, 20, 1, 0, 203, 1012, 945, 280, 30, 1, 0, 877, 6230, 8092, 3465, 595, 42, 1, 0, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 0, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jun 01 2007

Keywords

Comments

Without row n=0 and column k=0 this is triangle A039810.
This is an associated Sheffer matrix with e.g.f. of the m-th column ((exp(f(x))-1)^m)/m! with f(x)=:exp(x)-1.
The triangle is also called the exponential Riordan array [1, exp(exp(x)-1)]. - Peter Luschny, Apr 19 2015
Also the Bell transform of shifted Bell numbers A000110(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle starts:
  1;
  0,   1;
  0,   2,    1;
  0,   5,    6,    1;
  0,  15,   32,   12,    1;
  0,  52,  175,  110,   20,   1;
  0, 203, 1012,  945,  280,  30,  1;
  0, 877, 6230, 8092, 3465, 595, 42, 1;
		

Crossrefs

Columns k=0..3 give A000007, A000110 (for n > 0), A000558, A000559.
Row sums: A000258.
Alternating row sums: A130410.
T(2n,n) gives A321712.
Cf. A039810 (another version), A048993.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> combinat:-bell(n+1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[BellB[# + 1]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    a[n_, m_]:= Sum[StirlingS2[n, k]*StirlingS2[k, m], {k,m,n}]; Table[a[n, m], {n, 0, 100}, {m, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2018 *)
  • PARI
    for(n=0, 9, for(k=0, n, print1(sum(j=k, n, stirling(n, j, 2)*stirling(j, k, 2)), ", "))) \\ G. C. Greubel, Jul 10 2018
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, exp(exp(x) - 1), 8, exp=true) # Peter Luschny, Apr 19 2015
    

Formula

a(n,k) = Sum_{j=k..n} S2(n,j) * S2(j,k), n>=k>=0.
E.g.f. row polynomials with argument x: exp(x*f(f(z))).
E.g.f. column k: ((exp(exp(x) - 1) - 1)^k)/k!.

A340598 Number of balanced set partitions of {1..n}.

Original entry on oeis.org

0, 1, 0, 3, 3, 10, 60, 210, 700, 3556, 19845, 105567, 550935, 3120832, 19432413, 127949250, 858963105, 5882733142, 41636699676, 307105857344, 2357523511200, 18694832699907, 152228641035471, 1270386473853510, 10872532998387918, 95531590347525151
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2021

Keywords

Comments

A set partition is balanced if it has exactly as many blocks as the greatest size of a block.

Examples

			The a(1) = 1 through a(5) = 10 balanced set partitions (empty column indicated by dot):
  {{1}}  .  {{1},{2,3}}  {{1,2},{3,4}}  {{1},{2},{3,4,5}}
            {{1,2},{3}}  {{1,3},{2,4}}  {{1},{2,3,4},{5}}
            {{1,3},{2}}  {{1,4},{2,3}}  {{1,2,3},{4},{5}}
                                        {{1},{2,3,5},{4}}
                                        {{1,2,4},{3},{5}}
                                        {{1},{2,4,5},{3}}
                                        {{1,2,5},{3},{4}}
                                        {{1,3,4},{2},{5}}
                                        {{1,3,5},{2},{4}}
                                        {{1,4,5},{2},{3}}
		

Crossrefs

The unlabeled version is A047993 (A106529).
A000110 counts set partitions.
A000670 counts ordered set partitions.
A113547 counts set partitions by maximin.
Other balance-related sequences:
- A010054 counts balanced strict integer partitions (A002110).
- A098124 counts balanced integer compositions.
- A340596 counts co-balanced factorizations.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[#]==Max@@Length/@#&]],{n,0,8}]
  • PARI
    \\ D(n,k) counts balanced set partitions with k blocks.
    D(n,k)={my(t=sum(i=1, k, x^i/i!) + O(x*x^n)); n!*polcoef(t^k - (t-x^k/k!)^k, n)/k!}
    a(n)={sum(k=sqrtint(n), (n+1)\2, D(n,k))} \\ Andrew Howroyd, Mar 14 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Mar 14 2021

A318391 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet of length k.

Original entry on oeis.org

1, 1, 3, 1, 9, 15, 1, 21, 90, 113, 1, 45, 375, 1130, 1153, 1, 93, 1350, 7345, 17295, 15125, 1, 189, 4515, 39550, 161420, 317625, 245829, 1, 381, 14490, 192213, 1210650, 4023250, 6883212, 4815403, 1, 765, 45375, 878010, 8014503, 40020750, 113572998, 173354508, 111308699
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The T(3,2) = 9 pairs of set partitions:
  {{1},{2,3}}  {{1},{2,3}}
  {{1},{2,3}}   {{1,2,3}}
  {{1,2},{3}}  {{1,2},{3}}
  {{1,2},{3}}   {{1,2,3}}
  {{1,3},{2}}  {{1,3},{2}}
  {{1,3},{2}}   {{1,2,3}}
   {{1,2,3}}   {{1},{2,3}}
   {{1,2,3}}   {{1,2},{3}}
   {{1,2,3}}   {{1,3},{2}}
Triangle begins:
     1
     1     3
     1     9    15
     1    21    90   113
     1    45   375  1130  1153
     1    93  1350  7345 17295 15125
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[n,k]*Sum[StirlingS1[k,i]*BellB[i]^2,{i,k}],{n,10},{k,n}]
  • PARI
    row(n) = {my(b=Vec(serlaplace(exp(exp(x + O(x*x^n))-1)-1))); vector(n, k, stirling(n,k,2)*sum(i=1, k, stirling(k,i,1)*b[i]^2))}
    { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = S(n,k) * Sum_{i=1..k} s(k,i) * B(i)^2 where S = A008277, s = A048994, B = A000110.

A294786 Number of ways to choose a set partition of a factorization of n into distinct factors greater than one such that different blocks have different products.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 11, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 9, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2017

Keywords

Examples

			The a(36)=11 ways are:
(2)*(3)*(6),
(2)*(3*6), (2*6)*(3), (2)*(18), (3)*(12), (4)*(9),
(2*3*6), (2*18), (3*12), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Join@@Function[fac,Select[sps[fac],UnsameQ@@Times@@@#&]]/@sfs[n]],{n,100}]

Formula

a(product of n distinct primes) = A000258(n).
a(prime^n) = A279375(n).

A005945 Number of n-step mappings with 4 inputs.

Original entry on oeis.org

0, 1, 15, 60, 154, 315, 561, 910, 1380, 1989, 2755, 3696, 4830, 6175, 7749, 9570, 11656, 14025, 16695, 19684, 23010, 26691, 30745, 35190, 40044, 45325, 51051, 57240, 63910, 71079, 78765, 86986, 95760, 105105, 115039, 125580, 136746
Offset: 0

Views

Author

Keywords

Comments

a(n) is the coefficient of x^4/4! in n-th iteration of exp(x)-1.

Examples

			G.f. = x + 15*x^2 + 60*x^3 + 154*x^4 + 315*x^5 + 561*x^6 + 910*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005920, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. [Bruno Berselli, Apr 25 2010]
Cf. A094952.

Programs

  • Magma
    I:=[0, 1, 15, 60]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi Jun 18 2012
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,1,15,60},50] (* Vincenzo Librandi, Jun 18 2012 *)
    a[ n_] := 3 n^3 - 5/2 n^2 + 1/2 n; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = 3*n^3 - 5/2*n^2 + 1/2*n}; /* Michael Somos, Jan 23 2014 */
    

Formula

G.f.: x*(1+11*x+6*x^2)/(1-x)^4. a(n)=n*(3*n-1)*(2*n-1)/2.
For n>0, a(n) = n*A000567(n) - A000217(n-1). - Bruno Berselli, Apr 25 2010; Feb 01 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 18 2012
a(n) = -A094952(-n) for all n in Z. - Michael Somos, Jan 23 2014

Extensions

Edited by Michael Somos, Oct 29 2002

A318389 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet {{1},...,{n}} and join of length k.

Original entry on oeis.org

1, 2, 1, 8, 6, 1, 56, 44, 12, 1, 552, 440, 140, 20, 1, 7202, 5632, 1920, 340, 30, 1, 118456, 89278, 31192, 6160, 700, 42, 1, 2369922, 1708016, 595448, 124432, 16240, 1288, 56, 1, 56230544, 38592786, 13214672, 2830632, 400512, 37296, 2184, 72, 1, 1552048082
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The T(3,2) = 6 pairs of set partitions:
  {{1},{2},{3}}  {{1},{2,3}}
  {{1},{2},{3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1,3},{2}}
   {{1},{2,3}}  {{1},{2},{3}}
   {{1,2},{3}}  {{1},{2},{3}}
   {{1,3},{2}}  {{1},{2},{3}}
Triangle begins:
     1
     2    1
     8    6    1
    56   44   12    1
   552  440  140   20    1
  7202 5632 1920  340   30    1
		

Crossrefs

Row sums are A059849. First column is A181939.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[Max@@Length/@spmeet@@#==1,Length[csm[Union@@#]]==k]&]],{n,5},{k,n}]

A319182 Irregular triangle where T(n,k) is the number of set partitions of {1,...,n} with block-sizes given by the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 6, 1, 1, 5, 10, 15, 10, 10, 1, 1, 15, 6, 10, 15, 15, 60, 45, 20, 15, 1, 1, 7, 21, 35, 105, 21, 105, 70, 105, 35, 210, 105, 35, 21, 1, 1, 8, 28, 35, 28, 56, 210, 168, 280, 280, 105, 420, 56, 840, 280, 420, 70, 560, 210, 56, 28, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

A generalization of the triangle of Stirling numbers of the second kind, these are the coefficients appearing in the expansion of (x_1 + x_2 + x_3 + ...)^n in terms of augmented monomial symmetric functions. They also appear in Faa di Bruno's formula.

Examples

			Triangle begins:
  1
  1   1
  1   3   1
  1   3   4   6   1
  1   5  10  15  10  10   1
  1  15   6  10  15  15  60  45  20  15   1
The fourth row corresponds to the symmetric function identity (x_1 + x_2 + x_3 + ...)^4 = m(4) + 3 m(22) + 4 m(31) + 6 m(211) + m(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[numSetPtnsOfType/@primeMS/@Sort[Times@@Prime/@#&/@IntegerPartitions[n]],{n,7}]

Formula

T(n,k) = A124794(A215366(n,k)).

A321728 Number of integer partitions of n whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, 37, 50
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

First differs from A000701 at a(11) = 28, A000701(11) = 27
A vertical section is a partial Young diagram with at most one square in each row.
Conjecture: a(n) is the number of non-half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices.

Examples

			The a(2) = 1 through a(9) = 14 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the non-half-loop-graphical partitions up to n = 9:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (31)  (32)  (33)   (43)   (44)    (54)
                  (41)  (42)   (52)   (53)    (63)
                        (51)   (61)   (62)    (72)
                        (411)  (331)  (71)    (81)
                               (421)  (422)   (432)
                               (511)  (431)   (441)
                                      (521)   (522)
                                      (611)   (531)
                                      (5111)  (621)
                                              (711)
                                              (4311)
                                              (5211)
                                              (6111)
For example, a complete list of all half/full-loop-graphs with degrees y = (4,3,1) is the following:
  {{1,1},{1,2},{1,3},{2,2}}
  {{1},{2},{1,1},{1,2},{2,3}}
  {{1},{2},{1,1},{1,3},{2,2}}
  {{1},{3},{1,1},{1,2},{2,2}}
None of these is a half-loop-graph, as they have full loops (x,x), so y is counted under a(8).
		

Crossrefs

The complement is counted by A321729.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are A029889 or A339843 (covering).
The version for full loops is A339655.
A027187 counts partitions of even length, with Heinz numbers A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019.
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Length[Select[IntegerPartitions[n],Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]=={}&]],{n,8}]

Formula

a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is zero, where m is monomial and e is elementary symmetric functions.
a(n) = A000041(n) - A321729(n).

A322442 Number of pairs of set partitions of {1,...,n} where every block of one is a subset or superset of some block of the other.

Original entry on oeis.org

1, 1, 4, 25, 195, 1894, 22159, 303769, 4790858, 85715595, 1720097275, 38355019080, 942872934661, 25383601383937, 744118939661444, 23635548141900445, 809893084668253151, 29822472337116844174, 1175990509568611058299, 49504723853840395163221, 2218388253903492656783562
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(3) = 25 pairs of set partitions (these are actually all pairs of set partitions of {1,2,3}):
  (1)(2)(3)|(1)(2)(3)
  (1)(2)(3)|(1)(23)
  (1)(2)(3)|(12)(3)
  (1)(2)(3)|(13)(2)
  (1)(2)(3)|(123)
    (1)(23)|(1)(2)(3)
    (1)(23)|(1)(23)
    (1)(23)|(12)(3)
    (1)(23)|(13)(2)
    (1)(23)|(123)
    (12)(3)|(1)(2)(3)
    (12)(3)|(1)(23)
    (12)(3)|(12)(3)
    (12)(3)|(13)(2)
    (12)(3)|(123)
    (13)(2)|(1)(2)(3)
    (13)(2)|(1)(23)
    (13)(2)|(12)(3)
    (13)(2)|(13)(2)
    (13)(2)|(123)
      (123)|(1)(2)(3)
      (123)|(1)(23)
      (123)|(12)(3)
      (123)|(13)(2)
      (123)|(123)
Non-isomorphic representatives of the pairs of set partitions of {1,2,3,4} for which the condition fails:
    (12)(34)|(13)(24)
    (12)(34)|(1)(3)(24)
  (1)(2)(34)|(13)(24)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    costabQ[s_,t_]:=And@@Cases[s,x_:>Select[t,SubsetQ[x,#]||SubsetQ[#,x]&]!={}];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[costabQ@@#,costabQ@@Reverse[#]]&]],{n,5}]
  • PARI
    F(x)={my(bell=(exp(y*(exp(x) - 1))  )); subst(serlaplace( serconvol(bell, bell)), y, exp(exp(x) - 1)-1)}
    seq(n) = {my(x=x + O(x*x^n)); Vec(serlaplace( exp( 2*exp(exp(x) - 1) - exp(x) - 1) * F(x) ))} \\ Andrew Howroyd, Jan 19 2024

Formula

E.g.f.: exp(exp(x)-1) * (2*B(x) - 1) where B(x) is the e.g.f. of A319884. - Andrew Howroyd, Jan 19 2024

Extensions

a(8) onwards from Andrew Howroyd, Jan 19 2024

A336421 Number of ways to choose a divisor of a divisor, both having distinct prime exponents, of the n-th superprimorial number A006939(n).

Original entry on oeis.org

1, 3, 13, 76, 571, 5309, 59341, 780149
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2020

Keywords

Comments

A number has distinct prime exponents iff its prime signature is strict.
The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(2) = 13 ways:
  12/1/1  12/2/1  12/3/1  12/4/1  12/12/1
          12/2/2  12/3/3  12/4/2  12/12/2
                          12/4/4  12/12/3
                                  12/12/4
                                  12/12/12
		

Crossrefs

A000258 shifted once to the left is dominated by this sequence.
A336422 is the generalization to non-superprimorials.
A000110 counts divisors of superprimorials with distinct prime exponents.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    strsig[n_]:=UnsameQ@@Last/@FactorInteger[n];
    Table[Total[Cases[Divisors[chern[n]],d_?strsig:>Count[Divisors[d],e_?strsig]]],{n,0,5}]
Previous Showing 21-30 of 90 results. Next