A027616
Number of permutations of n elements containing a 2-cycle.
Original entry on oeis.org
0, 0, 1, 3, 9, 45, 285, 1995, 15855, 142695, 1427895, 15706845, 188471745, 2450132685, 34301992725, 514529890875, 8232476226975, 139952095858575, 2519137759913775, 47863617438361725, 957272348112505425, 20102719310362613925, 442259824841726816925, 10171975971359716789275
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
A027616:= func< n | Factorial(n)*(1- (&+[(-1/2)^j/Factorial(j): j in [0..Floor(n/2)]]) ) >;
[A027616(n): n in [0..30]]; // G. C. Greubel, Aug 05 2022
-
S:= series((1-exp(-x^2/2))/(1-x), x, 101):
seq(coeff(S,x,j)*j!,j=0..100); # Robert Israel, May 12 2016
-
nn=30; Table[n!,{n,0,nn}]-Range[0,nn]!CoefficientList[Series[Exp[-x^2/2]/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Oct 20 2012 *)
-
a(n) = n! * (1 - sum(k=0,floor(n/2), (-1)^k / (2^k * k!) ) );
/* Joerg Arndt, Oct 20 2012 */
-
N=33; x='x+O('x^N);
v=Vec( 'a0 + serlaplace( (1-exp(-x^2/2))/(1-x) ) );
v[1]-='a0; v
/* Joerg Arndt, Oct 20 2012 */
-
def A027616(n): return factorial(n)*(1-sum((-1/2)^k/factorial(k) for k in (0..(n//2))))
[A027616(n) for n in (0..30)] # G. C. Greubel, Aug 05 2022
A088436
Number of permutations in the symmetric group S_n that have exactly one transposition in their cycle decomposition.
Original entry on oeis.org
0, 1, 3, 6, 30, 225, 1575, 12180, 109620, 1100925, 12110175, 145259730, 1888376490, 26438216805, 396573252075, 6345155817000, 107867648889000, 1941617990136825, 36890741812599675, 737814829704702750
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 09 2003
From _Bernard Schott_, Feb 19 2019: (Start)
For S_4, the six permutations that have exactly one transposition in their cycle decomposition are (12)(3)(4), (13)(2)(4), (14)(2)(3), (23)(1)(4), (24)(1)(3), (34)(1)(2).
For S_5, there are exactly 10 transpositions: (12), (13), (14), (15), (23), (24), (25), (34), (35), (45), and for each transposition, there are 3 permutations that have exactly this transposition and no other transposition in their cycle decomposition; for example, for transposition (12), these three permutations: (12)(3)(4)(5), (12)(345), (12)(354), so a(5) = 10 * 3 = 30. (End)
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 189, Exercise 19 for k=1. With (-1)^k omitted.
-
m:=32; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x^2*Exp(-x^2/2)/(2*(1-x)) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Feb 19 2019
-
G=(exp(-z^2/2)*z^2*k)/((1-z)*2^k*k!): Gser=series(G,z=0,21):
for n from 2*k to 20 do a(n)=n!*coeff(Gser,z,n): end do: # Paul Weisenhorn, Jun 02 2010
-
d=Exp[-x^2/2]/(1-x); Range[0,20]! CoefficientList[Series[(x^2/2! )d, {x,0,20}], x] (* Geoffrey Critzer, Nov 29 2011 *)
-
my(x='x+O('x^30)); concat([0], Vec(serlaplace( x^2*exp(-x^2/2)/(2*(1-x)) ))) \\ G. C. Greubel, Feb 19 2019
-
m = 30; T = taylor(x^2*exp(-x^2/2)/(2*(1-x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (1..m)] # G. C. Greubel, Feb 19 2019
A122974
Triangle T(n,k), the number of permutations on n elements that have no cycles of length k.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 9, 15, 16, 18, 44, 75, 80, 90, 96, 265, 435, 520, 540, 576, 600, 1854, 3045, 3640, 3780, 4032, 4200, 4320, 14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280, 133496, 220185, 259840, 283500, 290304, 302400, 311040, 317520, 322560
Offset: 1
T(3,2)=3 since there are exactly 3 permutations of 1,2,3 that have no cycles of length 2, namely, (1)(2)(3),(1 2 3) and (2 1 3).
Triangle T(n,k) begins:
0;
1, 1;
2, 3, 4;
9, 15, 16, 18;
44, 75, 80, 90, 96;
265, 435, 520, 540, 576, 600;
1854, 3045, 3640, 3780, 4032, 4200, 4320;
14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280;
...
-
seq((round((2*n)^.5))!*sum((-1/(n-binomial(round((2*n)^.5),2)))^r/r!,r=0..floor(round((2*n)^.5)/(n-binomial(round((2*n)^.5),2)))),n=1..66);
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(`if`(j=k, 0,
T(n-j, k)*binomial(n-1, j-1)*(j-1)!), j=1..n))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Nov 24 2019
-
T[n_, k_] := T[n, k] = If[n==0, 1, Sum[If[j==k, 0, T[n - j, k] Binomial[n - 1, j - 1] (j - 1)!], {j, 1, n}]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)
A193385
Expansion of e.g.f. cosh( x^2/2 )/ (1-x).
Original entry on oeis.org
1, 1, 2, 6, 27, 135, 810, 5670, 45465, 409185, 4091850, 45010350, 540134595, 7021749735, 98304496290, 1474567444350, 23593081136625, 401082379322625, 7219482827807250, 137170173728337750, 2743403475221484075
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cosh(x^2/2)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2018
-
a:=series(cosh(x^2/2)/(1-x),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 27 2019
-
With[{nn=30},CoefficientList[Series[Cosh[x^2/2]/(1-x),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, May 01 2012 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( cosh( x^2 / 2 + x * O(x^n)) / (1 - x), n))}
A178669
The number of permutations of [n] with 2 cycles of length 2.
Original entry on oeis.org
0, 3, 15, 45, 315, 3150, 28350, 274050, 3014550, 36330525, 472296825, 6609317715, 99139765725, 1586293008300, 26966981141100, 485404420000500, 9222683980009500, 184453709062998375
Offset: 3
a(4)=3 counts the 3 permutations (2143), (3412), (4321) with 2 cycles
of length 2
-
A178669 := proc(n) local k ; k :=2 ; n!*add( (-1)^j/(j-k)!/2^j/k!,j=k..n/2) ; end proc:
seq(A178669(n),n=3..20) ;
-
d=Exp[-x^2/2]/(1-x); Range[0,20]! CoefficientList[Series[(3x^4/4! )d, {x,0,20}], x] (* Geoffrey Critzer, Nov 29 2011 *)
A337060
E.g.f.: 1 / (1 + x^2/2 + log(1 - x)).
Original entry on oeis.org
1, 1, 2, 8, 46, 324, 2708, 26424, 295272, 3714600, 51929472, 798610416, 13399081584, 243556758912, 4767863027328, 100004300847744, 2237419620187776, 53187370914349440, 1338737435337261312, 35568441673932566016, 994744655047298951424, 29211127285363209561600
Offset: 0
-
nmax = 21; CoefficientList[Series[1/(1 + x^2/2 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 21}]
A346372
a(0) = 1; a(n) = n * a(n-1) + (1/n) * Sum_{k=3..n} (binomial(n,k) * k!)^2 * a(n-k) / k.
Original entry on oeis.org
1, 1, 2, 10, 124, 2396, 64856, 2452472, 124483360, 8146185504, 668645524032, 67374446014272, 8183368905811584, 1179807474740449920, 199266648878034317568, 38984601149045449948416, 8748103140554862876727296, 2232274640259371687436982272, 642805438643602793466093711360
Offset: 0
-
a[0] = 1; a[n_] := a[n] = n a[n - 1] + (1/n) Sum[(Binomial[n, k] k!)^2 a[n - k]/k, {k, 3, n}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Exp[PolyLog[2, x] - x^2/4], {x, 0, nmax}], x] Range[0, nmax]!^2
A370699
Expansion of e.g.f. exp(-x^3/6)/(1-x).
Original entry on oeis.org
1, 1, 2, 5, 20, 100, 610, 4270, 34160, 307160, 3071600, 33787600, 405466600, 5271065800, 73794921200, 1106922416600, 17710758665600, 301082897315200, 5419492342264000, 102970354503016000, 2059407090060320000, 43247548855054544000, 951446074811199968000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^3/6)/(1-x)))
-
a(n) = n!*sum(k=0, n\3, (-1)^k/(6^k*k!));
Comments