cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 324 results. Next

A223233 T(n,k)=Rolling icosahedron footprints: number of nXk 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

1, 5, 12, 25, 65, 144, 125, 785, 845, 1728, 625, 7445, 25225, 10985, 20736, 3125, 75665, 492365, 812225, 142805, 248832, 15625, 753005, 11043445, 32837285, 26157625, 1856465, 2985984, 78125, 7540985, 236027705, 1697263985, 2191464605, 842416625
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Table starts
............1.............5................25.................125
...........12............65...............785................7445
..........144...........845.............25225..............492365
.........1728.........10985............812225............32837285
........20736........142805..........26157625..........2191464605
.......248832.......1856465.........842416625........146259564725
......2985984......24134045.......27130395625.......9761484584045
.....35831808.....313742585......873746350625.....651489782832965
....429981696....4078653605....28139386665625...43480983274973885
...5159780352...53022496865...906241361740625.2901957882023749205
..61917364224..689292459245.29185902861015625
.743008370688.8960801970185

Examples

			Some solutions for n=3 k=4
..0..6..0..5....0..5..6..5....0..7..0..1....0..1..3..1....0..1..0..7
..0..6.10..5....0..5..6..5....3..7..0..7....3..7..3..9....0..7..0..7
..0..5.10..4....6..2..6..5....3..7..5..7....3..9.11..7....3..1..3..7
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Column 1 is A001021(n-1)
Column 2 is 5*13^(n-1)
Row 1 is A000351(n-1)

Formula

Empirical for column k:
k=1: a(n) = 12*a(n-1)
k=2: a(n) = 13*a(n-1)
k=3: a(n) = 35*a(n-1) -90*a(n-2)
k=4: a(n) = 73*a(n-1) -423*a(n-2) +351*a(n-3)
k=5: [order 11]
k=6: [order 26]
Empirical for row n:
n=1: a(n) = 5*a(n-1)
n=2: a(n) = 7*a(n-1) +30*a(n-2) for n>3
n=3: a(n) = 18*a(n-1) +103*a(n-2) -552*a(n-3) +540*a(n-4) for n>5
n=4: a(n) = [order 12] for n>13

A303934 Number of ways to write 2*n as p + 2^k + 5^m with p prime and 2^k + 5^m squarefree, where k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 3, 3, 2, 2, 3, 3, 4, 3, 5, 4, 4, 3, 4, 5, 7, 4, 7, 4, 8, 7, 6, 7, 6, 5, 5, 5, 7, 5, 8, 5, 5, 8, 6, 9, 9, 6, 8, 6, 6, 7, 8, 4, 7, 8, 7, 3, 10, 6, 7, 8, 7, 7, 9, 5, 8, 7, 6, 5, 5, 6, 3, 11, 7, 9, 12, 8, 12, 10, 11, 11, 9, 7, 9, 7, 8, 8, 11, 7, 11, 8, 9, 15, 11, 8, 9, 8, 9
Offset: 1

Views

Author

Zhi-Wei Sun, May 03 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
This has been verified for all n = 2..10^10.
Note that a(n) <= A303821(n).

Examples

			a(2) = 1 since 2*2 = 2 + 2^0 + 5^0 with 2 prime and 2^0 + 5^0 squarefree.
a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 prime and 2^1 + 5^0 squarefree.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[SquareFreeQ[2^k+5^m]&&PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,90}];Print[tab]

A339685 a(n) = Sum_{d|n} 5^(d-1).

Original entry on oeis.org

1, 6, 26, 131, 626, 3156, 15626, 78256, 390651, 1953756, 9765626, 48831406, 244140626, 1220718756, 6103516276, 30517656381, 152587890626, 762939846906, 3814697265626, 19073488282006, 95367431656276, 476837167968756, 2384185791015626, 11920929003987656
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 5 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), this sequence (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339685:= func< n | (&+[5^(d-1): d in Divisors(n)]) >;
    [A339685(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[5^(d - 1), {d, Divisors[n]}], {n, 1, 24}]
    nmax = 24; CoefficientList[Series[Sum[x^k/(1 - 5 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 5^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339685(n): return sum(5^(k-1) for k in (1..n) if (k).divides(n))
    [A339685(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 5*x^k).
G.f.: Sum_{k>=1} 5^(k-1) * x^k / (1 - x^k).
a(n) ~ 5^(n-1). - Vaclav Kotesovec, Jun 05 2021

A075500 Stirling2 triangle with scaled diagonals (powers of 5).

Original entry on oeis.org

1, 5, 1, 25, 15, 1, 125, 175, 30, 1, 625, 1875, 625, 50, 1, 3125, 19375, 11250, 1625, 75, 1, 15625, 196875, 188125, 43750, 3500, 105, 1, 78125, 1984375, 3018750, 1063125, 131250, 6650, 140, 1, 390625, 19921875
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(5*z) - 1)*x/5) - 1.

Examples

			[1]; [5,1]; [25,15,1]; ...; p(3,x) = x(25 + 15*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*     1
*     5       1
*    25      15       1
*   125     175      30       1
*   625    1875     625      50      1
*  3125   19375   11250    1625     75    1
* 15625  196875  188125   43750   3500  105   1
* 78125 1984375 3018750 1063125 131250 6650 140 1
(End)
		

Crossrefs

Columns 1-7 are A000351, A016164, A075911-A075915. Row sums are A005011(n-1).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> 5^n, 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[5^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[5^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(5^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (5^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*5)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 5m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-5k*x), m >= 1.
E.g.f. for m-th column: (((exp(5x)-1)/5)^m)/m!, m >= 1.

A152187 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 20, 85, 355, 1490, 6245, 26185, 109780, 460265, 1929695, 8090410, 33919705, 142211165, 596232020, 2499751885, 10480415755, 43940006690, 184222098845, 772366329985, 3238209484180, 13576460102465, 56920427728295
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2008

Keywords

Comments

Unsigned version of A152185.
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 and 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the corner squares to A015523 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. (1+2*x)/(1 - 3*x - k*x^2). Red king sequences that are members of this family are A007483 (k=2), A108981 (k=4), A152187 (k=5; this sequence), A154964 (k=6), A179602 (k=7) and A179598 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A036563 (k=-2), A054486 (k=-1), A084244 (k=0), A108300 (k=1) and A000351 (k=10).
Inverse binomial transform of A015449 (without the first leading 1).
(End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,5},{1,5},40] (* Harvey P. Dale, May 03 2013 *)

Formula

G.f.: (1+2*x)/(1 - 3*x - 5*x^2).
Lim_{k->infinity} a(n+k)/a(k) = (A072263(n) + A015523(n)*sqrt(29))/2. - Johannes W. Meijer, Aug 01 2010
G.f.: G(0)*(1+2*x)/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013

A158960 Numerator of Hermite(n, 1/5).

Original entry on oeis.org

1, 2, -46, -292, 6316, 71032, -1436936, -24183472, 454560656, 10582510112, -183387274976, -5658029605952, 89546942024896, 3573911647620992, -51057689020940416, -2603853531376575232, 33085559702952161536, 2149253944507164508672
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

The denominators are 5^n = A000351(n) (conjectured). - M. F. Hasler, Feb 16 2014

Examples

			Numerators of 1, 2/5, -46/25, -292/125, 6316/625, 71032/3125, -1436936/15625,..
		

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 02 2018
  • Maple
    A158960 := proc(n)
        orthopoly[H](n,1/5) ;
        numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n,1/5],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011*)
  • PARI
    A158960 = n->numerator(polhermite(n,1/5)) \\ M. F. Hasler, Feb 16 2014
    

Formula

D-finite with recurrence a(n) -2*a(n-1) +50*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
a(n) = (-1)^floor(n/2)*2^ceiling(n/2)*A237987(n). - M. F. Hasler, Feb 16 2014
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 5^n * Hermite(n,1/5).
E.g.f.: exp(2*x-25*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/5)^(n-2k)/(k!*(n-2k)!). (End)

A234359 a(n) = |{2 < k < n-2: 5^{phi(k)} + 5^{phi(n-k)/2} - 1 is prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 1, 2, 4, 2, 4, 4, 3, 4, 3, 6, 5, 4, 6, 7, 8, 6, 7, 11, 7, 10, 9, 9, 7, 10, 11, 8, 7, 11, 10, 9, 6, 11, 15, 4, 14, 5, 14, 11, 13, 9, 13, 6, 12, 10, 12, 11, 10, 10, 13, 9, 7, 11, 7, 11, 4, 11, 9, 10, 6, 11, 8, 4, 10, 12, 13, 9, 7, 9, 6, 12, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 24 2013

Keywords

Comments

Conjecture: For any integer a > 1, there is a positive integer N(a) such that if n > N(a) then a^{phi(k)} + a^{phi(n-k)/2} - 1 is prime for some 2 < k < n-2. Moreover, we may take N(2) = N(3) = ... = N(6) = N(8) = 5 and N(7) = 17.
Clearly, this conjecture implies that for each a = 2, 3, ... there are infinitely many primes of the form a^{2*k} + a^m - 1, where k and m are positive integers.

Examples

			a(6) = 1 since 5^{phi(3)} + 5^{phi(3)/2} - 1 = 29 is prime.
a(11) = 2 since 5^{phi(4)} + 5^{phi(7)/2} - 1 = 149 and 5^{phi(7)} + 5^{phi(4)/2} - 1 = 15629 are both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=5^(EulerPhi[k])+5^(EulerPhi[n-k]/2)-1
    a[n_]:=Sum[If[PrimeQ[f[n,k]],1,0],{k,3,n-3}]
    Table[a[n],{n,1,100}]

A275069 Number A(n,k) of set partitions of [n] such that i-j is a multiple of k for all i,j belonging to the same block; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 4, 52, 1, 1, 1, 1, 1, 2, 10, 203, 1, 1, 1, 1, 1, 1, 4, 25, 877, 1, 1, 1, 1, 1, 1, 2, 8, 75, 4140, 1, 1, 1, 1, 1, 1, 1, 4, 20, 225, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 8, 50, 780, 115975, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			A(5,0) = 1: 1|2|3|4|5.
A(5,1) = 52 = A000110(5).
A(5,2) = 10: 135|24, 13|24|5, 135|2|4, 13|2|4|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
A(5,3) = 4: 14|25|3, 14|2|3|5, 1|25|3|4, 1|2|3|4|5.
A(5,4) = 2: 15|2|3|4, 1|2|3|4|5.
Square array A(n,k) begins:
  1,      1,    1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      1,    1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      2,    1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      5,    2,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,     15,    4,   2,   1,  1,  1, 1, 1, 1, 1, ...
  1,     52,   10,   4,   2,  1,  1, 1, 1, 1, 1, ...
  1,    203,   25,   8,   4,  2,  1, 1, 1, 1, 1, ...
  1,    877,   75,  20,   8,  4,  2, 1, 1, 1, 1, ...
  1,   4140,  225,  50,  16,  8,  4, 2, 1, 1, 1, ...
  1,  21147,  780, 125,  40, 16,  8, 4, 2, 1, 1, ...
  1, 115975, 2704, 375, 100, 32, 16, 8, 4, 2, 1, ...
		

Crossrefs

A(k*n,n) for k=1-4 gives: A000012, A000079, A000351, A001024.

Programs

  • Maple
    with(combinat):
    A:= (n, k)-> mul(bell(floor((n+i)/k)), i=0..k-1):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := Product[BellB[Floor[(n+i)/k]], {i, 0, k-1}]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2017, translated from Maple *)

Formula

A(n,k) = Product_{i=0..k-1} A000110(floor((n+i)/k)).

A006496 Imaginary part of (1+2i)^n.

Original entry on oeis.org

0, 2, 4, -2, -24, -38, 44, 278, 336, -718, -3116, -2642, 10296, 33802, 16124, -136762, -354144, -24478, 1721764, 3565918, -1476984, -20783558, -34182196, 35553398, 242017776, 306268562, -597551756, -2726446322, -2465133864, 8701963882, 29729597084, 15949374758
Offset: 0

Views

Author

Keywords

Comments

The absolute values of these numbers are the even numbers x such that x^2 + y^2 = 5^n with x and y coprime. See A098122. - T. D. Noe, Apr 14 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - 5*a(n-2); a(0)=0, a(1)=2. - T. D. Noe, Nov 09 2006
A000351(n) = A006495(n)^2 + a(n)^2. - Fabrice Baubet, May 28 2007
From R. J. Mathar, Apr 06 2008: (Start)
O.g.f.: 2*x/(1 - 2*x + 5*x^2).
a(n) = 2*A045873(n). (End)
E.g.f.: exp(x)*sin(2*x). - Sergei N. Gladkovskii, Jul 22 2012
a(n)/A006495(n) = -tan(2*n*arctan(phi)), where phi is the golden ratio (A001622). - Amiram Eldar, Jan 13 2022

Extensions

Signs from Christian G. Bower, Nov 15 1998
Corrected by T. D. Noe, Nov 09 2006
More terms from R. J. Mathar, Apr 06 2008

A013710 a(n) = 5^(2*n + 1).

Original entry on oeis.org

5, 125, 3125, 78125, 1953125, 48828125, 1220703125, 30517578125, 762939453125, 19073486328125, 476837158203125, 11920928955078125, 298023223876953125, 7450580596923828125, 186264514923095703125, 4656612873077392578125, 116415321826934814453125, 2910383045673370361328125
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 25*a(n-1); a(0)=5.
G.f.: 5/(1-25*x). (End)
E.g.f.: 5*exp(25*x). - Mohammad K. Azarian, Dec 23 2008
a(n) = 5*A009969(n) = A000351(A005408(n)). - Elmo R. Oliveira, Aug 26 2024
Previous Showing 71-80 of 324 results. Next