cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A332820 Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.

Original entry on oeis.org

1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023

Crossrefs

Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.

Programs

  • Mathematica
    Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332820(n) =  { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };

Formula

{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)

Extensions

New name from Peter Munn, Mar 08 2021

A332823 A 3-way classification indicator generated by the products of two consecutive primes and the cubes of primes. a(n) is -1, 0, or 1 such that a(n) == A048675(n) (mod 3).

Original entry on oeis.org

0, 1, -1, -1, 1, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 1, 1, -1, -1, 0, 1, -1, 1, -1, -1, 0, 0, 1, -1, 1, 1, -1, 0, -1, 0, 0, -1, 0, 1, 1, 1, -1, -1, 0, -1, -1, 1, 0, 1, 0, 0, 1, -1, 1, -1, -1, 1, 0, 1, -1, -1, -1, 0, 0, 0, 1, 1, 0, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, -1, -1, -1, 1, 0, -1, 0, 1, 1, -1, 0
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

Completely additive modulo 3.
The equivalent sequence modulo 2 is A096268 (with offset 1), which produces the {A003159, A036554} classification.
Let H be the multiplicative subgroup of the positive rational numbers generated by the products of two consecutive primes and the cubes of primes. a(n) indicates the coset of H containing n. a(n) = 0 if n is in H. a(n) = 1 if n is in 2H. a(n) = -1 if n is in (1/2)H.
The properties of this classification can usefully be compared to two well-studied classifications. With the {A026424, A028260} classes, multiplying a member of one class by a prime gives a member of the other class. With the {A000028, A000379} classes, adding a factor to the Fermi-Dirac factorization of a member of one class gives a member of the other class. So, if 4 is not a Fermi-Dirac factor of k, k and 4k will be in different classes of the {A000028, A000379} set; but k and 4k will be in the same class of the {A026424, A028260} set. For two numbers to necessarily be in different classes when they differ in either of the 2 ways described above, 3 classes are needed.
With the classes defined by this sequence, no two of k, 2k and 4k are in the same class. This is a consequence of the following stronger property: if k is any positive integer and m is a member of A050376 (often called Fermi-Dirac primes), then no two of k, k * m, k * m^2 are in the same class. Also, if p and q are consecutive primes, then k * p and k * q are in different classes.
Further properties are given in the sequences that list the classes: A332820, A332821, A332822.
The scaled imaginary part of the Eisenstein integer-valued function, f, defined in A353445. - Peter Munn, Apr 27 2022

Crossrefs

Cf. A332813 (0,1,2 version of this sequence), A353350.
Cf. A353354 (inverse Möbius transform, gives another 3-way classification indicator function).
Cf. A332820, A332821, A332822 for positions of 0's, 1's and -1's in this sequence; also A003159, A036554 for the modulo 2 equivalents.
Comparable functions: A008836, A064179, A096268, A332814.
A000035, A003961, A028234, A055396, A067029, A097248, A225546, A297845, A331590 are used to express relationship between terms of this sequence.
The formula section also details how the sequence maps the terms of A000040, A332461, A332462.

Programs

  • PARI
    A332823(n) = { my(f = factor(n),u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u,-1,u); };

Formula

a(n) = A102283(A048675(n)) = -1 + (1 + A048675(n)) mod 3.
a(1) = 0; for n > 1, a(n) = A102283[(A067029(n) * (2-(A000035(A055396(n))))) + a(A028234(n))].
For all n >= 1, k >= 1: (Start)
a(n * k) == a(n) + a(k) (mod 3).
a(A331590(n,k)) == a(n) + a(k) (mod 3).
a(n^2) = -a(n).
a(A003961(n)) = -a(n).
a(A297845(n,k)) = a(n) * a(k).
(End)
For all n >= 1: (Start)
a(A000040(n)) = (-1)^(n-1).
a(A225546(n)) = a(n).
a(A097248(n)) = a(n).
a(A332461(n)) = a(A332462(n)) = A332814(n).
(End)
a(n) = A332814(A332462(n)). [Compare to the formula above. For a proof, see A353350.] - Antti Karttunen, Apr 16 2022

A026416 A 2-way classification of integers: a(1) = 1, a(2) = 2 and for n > 2, a(n) is the smallest number not of the form a(i)*a(j) for 1 <= i < j < n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 61, 66, 67, 70, 71, 73, 78, 79, 81, 83, 88, 89, 97, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 121, 127, 128, 130, 131, 135, 136, 137, 138, 139
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition is: a(1) = 1, a(2) = 2; and for n > 2, a(n) = least positive integer > a(n-1) and not of the form a(i)*a(j) for 1 <= i < j < n.
a(2) to a(29) match the initial terms of A000028. [corrected by Peter Munn, Mar 15 2019]
This has a simpler definition than A000028, but the resulting pair lacks the crucial property of the A000028/A000379 pair (see the comment in A000028). - N. J. A. Sloane, Sep 28 2007
Contains (for example) 180, so is different from A123193. - Max Alekseyev, Sep 20 2007
From Vladimir Shevelev, Apr 05 2013: (Start)
1) The sequence does not contain (for example) 140, so is different from A000028.
2) Representation of numbers which are absent in the sequence as a product of two different terms of the sequence is, generally speaking, not unique. For example, 210 = 2*105 = 3*70 = 5*42 = 7*30.
(End)
Excluding a(1) = 1, the lexicographically earliest sequence of distinct nonnegative integers such that no term is a product of 2 distinct terms. Removing the latter distinctness requirement, the sequence becomes A026424; and the equivalent sequence where the product is of 2 or more distinct terms is A050376. A000028 is similarly the equivalent sequence when A059897 is used as multiplicative operator in place of standard integer multiplication. - Peter Munn, Mar 15 2019

Examples

			a(8) is not 10 because we already have 10 = 2*5. Of course all primes appear. 16 appears because 16 is not a product of earlier terms.
		

Crossrefs

Complement of A131181. Cf. A000028, A059897.
Similar sequences with different starting conditions: A026417 (1,3), A026419 (1,4), A026420 (2,4), A026421 (3,4).
Related sequences with definition using any products (not necessarily distinct) and with various starting conditions: A026422 (1,2),A026423 (1,3), A026424 (2,3), A026425 (1,4), A026426 (2,4), A026427 (3,4).
See also families of related sequences: A026431 (excluding product-1), A026443 (excluding product+2), A026453 (excluding product-2) and references therein.

Programs

  • Mathematica
    a[1]=1; a[2]=2; a[n_] := a[n] = For[k = a[n-1] + 1, True, k++, If[ FreeQ[ Table[ a[i]*a[j], {i, 1, n-2}, {j, i+1, n-1}], k], Return[k]]]; Table[a[n], {n, 1, 101}] (* Jean-François Alcover, May 16 2013 *)
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        a, products = [1, 2], {2}
        yield from a
        for k in count(3):
            if k not in products:
                yield k
                products.update(k*a[i] for i in range(len(a)))
                a.append(k)
            products.discard(k)
    print(list(islice(agen(), 62))) # Michael S. Branicky, Jun 09 2025

Extensions

More terms from Max Alekseyev, Sep 23 2007
Edited by N. J. A. Sloane, Jul 13 2008 at the suggestion of R. J. Mathar and Max Alekseyev

A056913 Odd squarefree numbers for which the number of prime divisors is even.

Original entry on oeis.org

1, 15, 21, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 301, 303
Offset: 1

Views

Author

James Sellers, Jul 07 2000

Keywords

Comments

Liouville function lambda(n) (A008836) is positive.
From Peter Munn, Jan 16 2020: (Start)
The sequence is closed under the commutative binary operation A059897(.,.). As integers are self-inverse under A059897, it forms a subgroup of the positive integers considered as a group under A059897.
This sequence is the intersection of A000379 and A056911, which are also subgroups of the positive integers under A059897.
(End)
The asymptotic density of this sequence is 2/Pi^2 (A185197). - Amiram Eldar, Oct 06 2020

Crossrefs

Intersection of A056911 with either of A000379, A028260.

Programs

  • Magma
    [k:k in [1..303 by 2]| IsSquarefree(k) and IsEven(#PrimeDivisors(k))]; // Marius A. Burtea, Jan 21 2020
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}&&FactorInteger[n][[1,1]]>2; a=6;lst={1};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    Select[Range[1, 303, 2], MoebiusMu[#] == 1 &] (* Amiram Eldar, Oct 06 2020 *)
  • PARI
    list(lim)=my(v=List([1])); forfactored(n=15,lim\1, if(n[2][1,1]>2 && vecmax(n[2][,2])==1 && #(n[2][,2])%2==0, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
    

A268390 Products of an even number of distinct primes and the square of a number in the sequence (including 1).

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 196, 201, 202, 203, 205, 206, 209, 210
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2016

Keywords

Comments

Old name: 'Positions of zeros in A268387: numbers n such that when the exponents e_1 .. e_k in their prime factorization n = p_1^e_1 * ... * p_k^e_k are bitwise-xored together, the result is zero.
From Peter Munn, Sep 14 2019 and Dec 01 2019: (Start)
When trailing zeros are removed from the terms written in base p, for any prime p, every positive integer not divisible by p appears exactly once. This is the lexicographically earliest sequence with this property.
The closure of A238748 with respect to the commutative binary operation A059897(.,.). As integers are self-inverse under A059897(.,.), the sequence thereby forms a subgroup, denoted H, of the positive integers under A059897(.,.). H is a subgroup of A000379.
(The symbol ^ can take on a meaning in relation to a group operation. However, in this comment ^ denotes the power operator for standard integer multiplication.) For any prime p, the subgroup {p^k : k >= 0} and H are each a (left and right) transversal of the other. For k >= 0 and primes p_1 and p_2, the cosets (p_1^k)H and (p_2^k)H are the same.
(End)
From Peter Munn, Dec 01 2021: (Start)
If we take the square root of the square terms we reproduce the sequence itself. The set of all products of a square term and a squarefree term is the sequence as a set.
The terms are the elements of the ideal generated by {6} in the ring defined in A329329. Similarly, the ideal generated by {8} gives A262675. 6 and 8 are images of each other under A225546(.), which is an automorphism of the ring. So this sequence and A262675, as sets, are images of each other under A225546(.). The elements of the ideal generated by {6,8} form the notable set A000379.
(End)

Examples

			1 has an empty factorization, and as XOR of an empty set is zero, 1 is included.
6 = 2^1 * 3^1 and as XOR(1,1) = 0, 6 is included.
30 = 2^1 * 3^1 * 5^1 is NOT included, as XOR(1,1,1) = 1.
360 = 2^3 * 3^2 * 5^1 is included, as the bitwise-XOR of exponents 3, 2 and 1 ("11", "10" and "01" in binary) results zero.
10, 15, 36 and 216 are in A238748. 360 = A059897(10, 36) = A059897(15, 216) and 540 = A059897(15, 36) = A059897(10, 216). So 360 and 540 are in the closure of A238748 under A059897(.,.), so in this sequence although absent from A238748. - _Peter Munn_, Oct 30 2019
		

Crossrefs

Positions of 0's in A268387, cf. A374595 (positions of 1's).
Cf. A000188, A003987, A048833 (counts prime signatures that are represented), A059897, A329329.
Subsequences: A006881 (semiprime terms), A030229 (squarefree terms), A238748 (differs first by missing a(115) = 360 and lists more subsequences).
Subsequences for prime signatures not within A238748: A163569, A190111, A190468.
Subsequence of A000379, A028260. Differs from their intersection, A374472, by omitting 64, 144, 324 etc.
Related to A262675 via A225546.
Ordered odd bisection of A334205.

Programs

  • Mathematica
    Select[Range[200], # == 1 || BitXor @@ Last /@ FactorInteger[#] == 0 &] (* Amiram Eldar, Nov 27 2020 *)

Formula

From Peter Munn, Oct 30 2019: (Start)
For k >= 0, prime p_1, prime p_2, {m : m = A059897(p_1^k, a(n)), n >= 1} = {m : m = A059897(p_2^k, a(n)), n >= 1}.
For n >= 1, k >= 0, prime p, A268387(A059897(p^k, a(n))) = k.
(End)
From Peter Munn, Nov 24 2021: (Start)
{a(n) : n >= 1} = {A000188(a(n)) : n >= 1}.
{a(n) : n >= 1} = {A225546(A262675(n)) : n >= 1}.
{A059897(a(n), A262675(m)) : n >= 1, m >= 1} = {A000379(k) : k >= 1}.
(End)

Extensions

New name from Peter Munn, Jul 15 2024

A064179 Infinitary version of Moebius function: infinitary MoebiusMu of n, equal to mu(n) iff mu(n) differs from zero, else 1 or -1 depending on whether the sum of the binary digits of the exponents in the prime decomposition of n is even or odd.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1
Offset: 1

Views

Author

Wouter Meeussen, Sep 20 2001

Keywords

Comments

Apparently the (ordinary) Dirichlet inverse of A050377. - R. J. Mathar, Jul 15 2010
Also analog of Liouville's function (A008836) in Fermi-Dirac arithmetic, where the terms of A050376 play the role of primes (see examples). - Vladimir Shevelev, Oct 28 2013.

Examples

			G.f. = x - x^2 - x^3 - x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 + ...
mu[45]=0 but iMoebiusMu[45]=1 because 45 = 3^2 * 5^1 and the binary digits of 2 and 1 add up to 2, an even number.
A unique representation of 48 over distinct terms of A050376 is 3*16. Since it contains even factors, then a(48)=1; for 54 such a representation is 2*3*9, thus a(54)=-1. - _Vladimir Shevelev_, Oct 28 2013
		

References

  • Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian)

Crossrefs

Sequences with related definitions: A008683, A008836, A064547, A302777.
Positions of -1: A000028.
Positions of 1: A000379.
Sequences used to express relationships between the terms: A000188, A003961, A007913, A008833, A059897, A225546.

Programs

  • Mathematica
    iMoebiusMu[n_] := Switch[MoebiusMu[n], 1, 1, -1, -1, 0, If[OddQ[Plus@@(DigitCount[Last[Transpose[FactorInteger[n]]], 2, 1])], -1, 1]];
    (* The Moebius inversion formula seems to hold for iMoebiusMu and the infinitary_divisors of n: if g[ n_ ] := Plus@@(f/@iDivisors[ n ]) for all n, then f[ n_ ]===Plus@@(iMoebiusMu[ # ]g[ n/# ]&/@iDivisors[ n ]) *)
    f[p_, e_] := (-1)^DigitCount[e, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; (-1) ^ subst( Pol( binary(e)), x, 1)))}; /* Michael Somos, Jan 08 2008 */
    
  • PARI
    a(n) = if (n==1, 1, (-1)^omega(core(n)) * a(core(n,1)[2])) \\ Peter Munn, Mar 16 2022
    
  • PARI
    a(n) = vecprod(apply(x -> (-1)^hammingweight(x), factor(n)[, 2])); \\ Amiram Eldar, Dec 23 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A064179(n): return prod(-1 if e.bit_count()&1 else 1 for e in factorint(n).values()) # Chai Wah Wu, Oct 12 2024
  • Scheme
    (define (A064179 n) (expt -1 (A064547 n))) ;; Antti Karttunen, Nov 23 2017
    

Formula

From Vladimir Shevelev Feb 20 2011: (Start)
Sum_{d runs through i-divisors of n} a(d)=1 if n=1, or 0 if n>1; Sum_{d runs through i-divisors of n} a(d)/d = A091732(n)/n.
Infinitary Moebius inversion:
If Sum_{d runs through i-divisors of n} f(d)=F(n), then f(n) = Sum_{d runs through i-divisors of n} a(d)*F(n/d). (End)
a(n) = (-1)^A064547(n). - R. J. Mathar, Apr 19 2011
Let k=k(n) be the number of terms of A050376 that divide n with odd maximal exponent. Then a(n) = (-1)^k. For example, if n=96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus k(96)=3 and a(96)=-1. - Vladimir Shevelev, Oct 28 2013
From Peter Munn, Jan 25 2020: (Start)
a(A050376(n)) = -1; a(A059897(n,k)) = a(n) * a(k).
a(n^2) = a(n).
a(A003961(n)) = a(n).
a(A225546(n)) = a(n).
a(A000028(n)) = -1; a(A000379(n)) = 1.
(End)
a(n) = a(A007913(n)) * a(A008833(n)) = (-1)^A001221(A007913(n)) * a(A000188(n)). - Peter Munn, Mar 16 2022
From Amiram Eldar, Dec 23 2023: (Start)
Multiplicative with a(p^e) = (-1)^A000120(e).
Dirichlet g.f.: 1/Product_{k>=0} zeta(2^k * s) (Steuding et al., 2011). (End)

A238748 Numbers k such that each integer that appears in the prime signature of k appears an even number of times.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1

Views

Author

Matthew Vandermast, May 08 2014

Keywords

Comments

Values of n for which all numbers in row A238747(n) are even. Also, numbers n such that A000005(n^m) is a perfect square for all nonnegative integers m; numbers n such that A181819(n) is a perfect square; numbers n such that A182860(n) is odd.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 3, 33, 314, 3119, 31436, 315888, 3162042, 31626518, 316284320, 3162915907, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3162... . - Amiram Eldar, Nov 28 2023

Examples

			The prime signature of 36 = 2^2 * 3^2 is {2,2}. One distinct integer (namely, 2) appears in the prime signature, and it appears an even number of times (2 times). Hence, 36 appears in the sequence.
The prime factorization of 1260 = 2^2 * 3^2 * 5^1 * 7^1. Exponent 2 occurs twice (an even number of times), as well as exponent 1, thus 1260 is included. It is also the first term k > 1 in this sequence for which A182850(k) = 4, not 3. - _Antti Karttunen_, Feb 06 2016
		

Crossrefs

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[Tally[FactorInteger[n][[;; , 2]]][[;; , 2]], EvenQ]; Select[Range[200], q] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    is(n) = {my(e = factor(n)[, 2], m = #e); if(m%2, return(0)); e = vecsort(e); forstep(i = 1, m, 2, if(e[i] != e[i+1], return(0))); 1;} \\ Amiram Eldar, Nov 28 2023
  • Scheme
    (define A238748 (MATCHING-POS 1 1 (lambda (n) (square? (A181819 n)))))
    (define (square? n) (not (zero? (A010052 n))))
    ;; Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 06 2016
    

A240521 a(n) = A050376(n)*A050376(n+1) where A050376(n) is the n-th number of the form p^(2^k) with p is prime and k >= 0.

Original entry on oeis.org

6, 12, 20, 35, 63, 99, 143, 208, 272, 323, 437, 575, 725, 899, 1147, 1517, 1763, 2021, 2303, 2597, 3127, 3599, 4087, 4757, 5183, 5767, 6399, 6723, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 13673, 15367, 16637, 17947, 19043, 20711, 22499, 23707, 25591
Offset: 1

Views

Author

Vladimir Shevelev, Apr 07 2014

Keywords

Comments

Let m be an odd positive number. Let S_m denote the sequence {Product_{i=1..r} q_(n+t_i)}A050376%20and%20Sum">{n>=1}, where {q_i} is sequence A050376 and Sum{i=1..r} 2^(t_1 - t_i) is the binary representation of m, such that t_1 > t_2 > ... > t_r = 0. Note that {S_1, S_3, S_5, ...} is a partition of all integers > 1. Then S_1=A050376, which is obtained when we set r=1, t_1 = 0. [Formula made compatible with A240535 data by Peter Munn, Aug 10 2021]
This present sequence is S_3 in this partition. It is obtained when we set r=2, t_1=1, t_2=0.
S_m(n) = A052330(A030101(m)*2^(n-1)) = A329330(A050376(n), A052330(A030101(m))). - Peter Munn, Aug 10 2021
A minimal set of generators for A000379 as a group under A059897(.,.). - Peter Munn, Aug 11 2019

Crossrefs

Positions of 3's in A240535.
Sequences for other parts of the partition described in the first comment: A050376 (S_1), A240522 (S_5), A240524 (S_7), A240536 (S_9), A241024 (S_11), A241025 (S_13).

Programs

  • Python
    from sympy import primepi, integer_nthroot
    def A240521(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025

Formula

a(n) = A052330(3*2^(n-1)) = A329330(A050376(n), 6). - Peter Munn, Aug 10 2021

Extensions

More terms from Peter J. C. Moses, Apr 18 2014

A332821 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 1 (mod 3).

Original entry on oeis.org

2, 5, 9, 11, 12, 16, 17, 21, 23, 28, 30, 31, 39, 40, 41, 47, 49, 52, 54, 57, 59, 66, 67, 70, 72, 73, 75, 76, 83, 87, 88, 91, 96, 97, 100, 102, 103, 109, 111, 116, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 148, 149, 154, 157, 159, 165, 167, 168, 169, 172, 175, 179, 180, 183, 184, 186, 190, 191, 197, 203, 211, 212
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, this sequence and A332822.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332822. This sequence has the primes with odd indexes, those in A031368.
The terms are the even numbers in A332822 halved. The terms are also the numbers m such that 5m is in A332822, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332820, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332820, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332822, which consists exactly of those numbers. For larger primes, an alternating pattern applies as described in the previous paragraph.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting number is in A332822, which consists entirely of those numbers.
The product of any 2 terms of this sequence is in A332822, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332822, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of ones in A332823; equivalently, numbers in row 3k+1 of A277905 for some k >= 0.
Subsequences: intersection of A026478 and A066208, A031368 (prime terms), A033431\{0}, A052934\{1}, A069486, A099800, A167747\{1}, A244725\{0}, A244728\{0}, A338911 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 212, Mod[Total@ #, 3] == 1 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332821(n) =  { my(f = factor(n)); (1==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332820(k) : k >= 1} U {A003961(A332822(k)) : k >= 1}.
{a(n) : n >= 1} = {A332822(k)^2 : k >= 1} U {A331590(2, A332820(k)) : k >= 1}.

A332822 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 2 (mod 3).

Original entry on oeis.org

3, 4, 7, 10, 13, 18, 19, 22, 24, 25, 29, 32, 34, 37, 42, 43, 45, 46, 53, 55, 56, 60, 61, 62, 71, 78, 79, 80, 81, 82, 85, 89, 94, 98, 99, 101, 104, 105, 107, 108, 113, 114, 115, 118, 121, 131, 132, 134, 139, 140, 144, 146, 150, 151, 152, 153, 155, 163, 166, 173, 174, 176, 181, 182, 187, 189, 192, 193, 194, 195, 199, 200, 204
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, A332821 and this sequence.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332821. This sequence has the primes with even indexes, those in A031215.
The terms are the even numbers in A332820 halved. The terms are also the numbers m such that 5m is in A332820, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332821, and so on for alternate primes: 7, 13, 19, 29 etc.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, we get the same set of numbers as we get from halving the even terms of this sequence, and A332821 consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332820, which consists exactly of those numbers. The numbers that are one fifth of the terms that are multiples of 5 constitute A332821, and for larger primes, an alternating pattern applies as described in the previous paragraph.
The product of any 2 terms of this sequence is in A332821, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332821, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of terms valued -1 in A332823; equivalently, numbers in row 3k-1 of A277905 for some k >= 1.
Subsequences: intersection of A026478 and A066207, A031215 (prime terms), A033430\{0}, A117642\{0}, A169604, A244727\{0}, A244729\{0}, A338910 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 204, Mod[Total@ #, 3] == 2 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332822(n) =  { my(f = factor(n)); (2==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332821(k) : k >= 1} U {A003961(A332821(k)) : k >= 1}.
{a(n) : n >= 1} = {A332821(k)^2 : k >= 1} U {A331590(2, A332821(k)) : k >= 1}.
Previous Showing 11-20 of 33 results. Next