cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A259694 a(n) = Sum(k^6*sigma(k)*sigma(n-k),k=1..n-1).

Original entry on oeis.org

0, 1, 195, 3496, 38195, 192780, 977386, 3216320, 9860049, 27321870, 65803045, 144005856, 308944925, 635774072, 1112550390, 2153146880, 3618341556, 6391671525, 9949570455, 16725562160, 24691972080, 40979569092, 56807498030, 89450231040, 120404165825
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001479.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(6);
  • PARI
    a(n) = sum(k=1, n-1, k^6*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

A259695 a(n) = Sum_{k=1..n-1} k^7 * sigma(k) * sigma(n-k).

Original entry on oeis.org

0, 1, 387, 9904, 142475, 850500, 5287786, 19400960, 68736681, 210682950, 565317445, 1328193216, 3163440917, 6945663368, 13045807350, 26914795520, 48673795956, 89900901837, 149363037975, 262436871200, 409003474320, 711715515852, 1035199173422, 1683466675200
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001480.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(7);
  • Mathematica
    Table[Sum[k^7 DivisorSigma[1,k]DivisorSigma[1,n-k],{k,n-1}],{n,30}] (* Harvey P. Dale, Dec 14 2015 *)
  • PARI
    a(n) = sum(k=1, n-1, k^7*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

A259696 a(n) = Sum_{k=1..n-1} k^8*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 771, 28552, 540563, 3830364, 29209978, 119337536, 490114881, 1659932478, 4961414965, 12516905184, 33139873949, 77515802840, 156374512326, 344012784128, 669604434612, 1292506329141, 2292202227639, 4210108803824, 6929184038448, 12639642518772, 19287324979742, 32384260599552
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001481.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(8);
  • PARI
    a(n) = sum(k=1, n-1, k^8*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

A065093 Convolution of A000010 with itself.

Original entry on oeis.org

1, 2, 5, 8, 16, 20, 36, 44, 68, 76, 120, 124, 188, 196, 276, 272, 404, 380, 544, 532, 716, 668, 968, 860, 1184, 1120, 1472, 1332, 1896, 1624, 2204, 2036, 2656, 2352, 3284, 2752, 3684, 3356, 4324, 3744, 5192, 4312, 5720, 5180, 6540, 5628, 7768, 6388, 8476
Offset: 1

Views

Author

Vladeta Jovovic, Nov 11 2001

Keywords

Crossrefs

Column k=2 of A340995.

Programs

  • Mathematica
    Table[Sum[EulerPhi[j]*EulerPhi[n-j], {j, 1, n-1}], {n, 2, 50}] (* Vaclav Kotesovec, Aug 18 2021 *)
  • PARI
    { for (n=1, 1000, a=sum(k=1, n, eulerphi(k)*eulerphi(n+1-k)); write("b065093.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009

Formula

a(n) = Sum_{k=1..n} phi(k)*phi(n+1-k), where phi is Euler totient function (A000010).
G.f.: (1/x)*(Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2)^2. - Ilya Gutkovskiy, Jan 31 2017
a(n) ~ (n^3/6) * c * Product_{primes p|n+1} ((p^3-2*p+1)/(p*(p^2-2))), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474) (Ingham, 1927). - Amiram Eldar, Jul 13 2024

A112964 Sum(mu(i)*sigma(j): i+j=n), with mu=A008683 and sigma=A000203.

Original entry on oeis.org

0, 1, 2, 0, 0, -6, -3, -12, -11, -13, -22, -19, -20, -30, -41, -15, -55, -24, -52, -41, -59, -24, -109, -22, -78, -42, -111, -26, -131, -2, -119, -75, -133, -8, -214, 7, -175, -68, -176, -17, -209, 14, -231, -73, -175, 45, -349, -11, -236, -20, -236, -53, -384, 68, -321, -56, -270, 1, -457, 41, -328, -48
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Examples

			a(5)=mu(1)*sigma(4)+mu(2)*sigma(3)+mu(3)*sigma(2)+mu(4)*sigma(1)
= 1*7 - 1*4 - 1*3 + 0*1 = 0.
		

Crossrefs

Programs

A374951 a(n) = Sum_{i+j+k=n, i,j,k >= 1} sigma(i) * sigma(j) * sigma(k).

Original entry on oeis.org

0, 0, 1, 9, 39, 120, 300, 645, 1261, 2262, 3825, 6160, 9471, 14178, 20376, 28965, 39600, 54066, 71145, 94248, 120140, 155310, 193116, 244560, 297819, 370860, 443710, 544554, 641655, 778458, 904800, 1085445, 1248762, 1483308, 1688052, 1991515, 2244375, 2626380
Offset: 1

Views

Author

Seiichi Manyama, Jul 25 2024

Keywords

Crossrefs

Column k=3 of A319083.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 25 2024
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0],
       If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q,
       Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 3];
    Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 14 2025, after Alois P. Heinz *)
  • PARI
    my(N=40, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, k*x^k/(1-x^k))^3))
    
  • Python
    from sympy import divisor_sigma
    def A374951(n): return (60*sum(divisor_sigma(i)*divisor_sigma(n-i,3) for i in range(1,n))+divisor_sigma(n)*(9*n*(2*n-1)+1)-5*divisor_sigma(n,3)*(3*n-1))//144  # Chai Wah Wu, Jul 25 2024

Formula

G.f.: ( Sum_{k>=1} k * x^k/(1 - x^k) )^3 = ( Sum_{k>=1} x^k/(1 - x^k)^2 )^3.
a(n) = Sum_{i=1..n-2} sigma(i)*A000385(n-i-1). - Chai Wah Wu, Jul 25 2024
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 155520. - Vaclav Kotesovec, Sep 19 2024

A059356 A diagonal of triangle in A008298.

Original entry on oeis.org

1, 9, 59, 450, 3394, 30912, 293292, 3032208, 36290736, 433762560, 5925016800, 83648747520, 1335385128960, 20323375994880, 376785057196800, 6493118120294400, 132672192555571200, 2513351450024755200, 56577426980420505600, 1188283280226545664000, 29682641812682686464000, 658094690655791972352000
Offset: 2

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.

Crossrefs

Programs

  • Mathematica
    nmax = 30; Table[n!/2 * Sum[DivisorSigma[1, k] * DivisorSigma[1, n-k] / k / (n-k), {k, 1, n-1}], {n, 2, nmax}] (* Vaclav Kotesovec, Nov 09 2020 *)
  • PARI
    {a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-t)), n), 2)} \\ Seiichi Manyama, Nov 07 2020
    
  • PARI
    {a(n)= (n-1)!*sum(k=1, n-1, sigma(k)*sigma(n-k)/k)} \\ Seiichi Manyama, Nov 09 2020
    
  • PARI
    {a(n)= n!*sum(k=1, n-1, sigma(k)*sigma(n-k)/(k*(n-k)))/2} \\ Seiichi Manyama, Nov 09 2020

Formula

a(n) = (n-1)! * Sum_{k=1..n-1} sigma(k)*sigma(n-k)/k = (n!/2) * Sum_{k=1..n-1} sigma(k)*sigma(n-k)/(k*(n-k)). - Seiichi Manyama, Nov 09 2020.
E.g.f.: (1/2) * log( Product_{k>=1} (1 - x^k) )^2. - Ilya Gutkovskiy, Apr 24 2021

Extensions

More terms from Vladeta Jovovic, Dec 28 2001

A218276 Convolution of level 2 of the divisor function.

Original entry on oeis.org

0, 0, 1, 3, 7, 16, 22, 45, 49, 100, 95, 178, 161, 304, 250, 465, 372, 676, 525, 952, 720, 1280, 946, 1702, 1217, 2156, 1570, 2764, 1925, 3376, 2360, 4185, 2912, 4944, 3404, 6121, 4047, 6960, 4858, 8344, 5530, 9600, 6391, 11246, 7513, 12496, 8372, 14926, 9486
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

Belongs to the family of convolution sums: Sum_{m < n*N} sigma(n)*sigma(n - N*m).
Named W2(n) by S. Alaca and K. S. Williams.
The convolution sum: Sum_{m < n} sigma(n)*sigma(n - m) = W1(n) is A000385(n+1).

Crossrefs

Programs

  • Maple
    with(numtheory): seq((1/48)*(22*sigma[3](n) - 2*sigma[3](2*n) + 5*sigma(n) - sigma(2*n) - 24*n*sigma(n) + 6*n*sigma(2*n)),n=1..60); # Ridouane Oudra, Feb 23 2021
  • Mathematica
    Table[Sum[DivisorSigma[1, k]*DivisorSigma[1, n - 2*k], {k, 1, Floor[(n - 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    lista(nn) = {for (i=1, nn, s = sum(m=1, floor((i-1)/2), sigma(m)*sigma(i-2*m)); print1(s , ", "););}
    
  • PARI
    lista(nn) = {for (i=1, nn, v = sigma(i,3)/12 - i*sigma(i)/8 + sigma(i)/24;if (i%2 == 0, v += sigma(i/2,3)/3 - i*sigma(i/2)/4 + sigma(i/2)/24); print1(v , ", "););}

Formula

a(n) = Sum_{m < 2*n} sigma(n)*sigma(n - 2*m).
a(n) = sigma_3(n)/12 + sigma_3(n/2)/3 - n*sigma(n)/8 - n*sigma(n/2)/4 + sigma(n)/24 + sigma(n/2)/24.
a(n) = (1/48)*(22*sigma_3(n) - 2*sigma_3(2*n) + 5*sigma(n) - sigma(2*n) - 24*n*sigma(n) + 6*n*sigma(2*n)). - Ridouane Oudra, Feb 23 2021

A218277 Convolution of level 3 of the divisor function.

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 10, 15, 24, 33, 45, 65, 77, 102, 143, 155, 180, 268, 255, 315, 434, 435, 462, 695, 593, 735, 960, 918, 945, 1437, 1160, 1395, 1825, 1692, 1668, 2549, 1995, 2385, 3073, 2775, 2730, 4190, 3157, 3747, 4739, 4290, 4140, 6355, 4686, 5523, 7044
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

Named W3(n) by S. Alaca and K. S. Williams.

Crossrefs

Programs

  • Maple
    f:= n -> add(numtheory:-sigma(m)*numtheory:-sigma(n-3*m),m=1..floor((n-1)/3)):
    map(f, [$1..50]); # Robert Israel, Jun 28 2018
    with(numtheory): seq((1/72)*(31*sigma[3](n) - sigma[3](3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)), n=1..50); # Ridouane Oudra, Mar 21 2021
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, m] DivisorSigma[1, n-3m], {m, 1, (n-1)/3}];
    Array[a, 50] (* Jean-François Alcover, Sep 19 2018 *)
  • PARI
    lista(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/3), sigma(m)*sigma(i-3*m)); print1(s , ", "););}
    
  • PARI
    lista(n) = {for (i=1, n, v = sigma(i,3)/24 - i*sigma(i)/12 + sigma(i)/24;if (i%3 == 0, v += 3*sigma(i/3,3)/8 - i*sigma(i/3)/4 + sigma(i/3)/24); print1(v , ", "););}

Formula

a(n) = Sum_{m<3n} sigma(m)*sigma(n-3*m).
a(n) = sigma3(n)/24 - n*sigma(n)/12 + sigma(n)/24 + 3*sigma3(n/3)/8 - n*sigma(n/3)/4 + sigma(n/3)/24.
a(n) = (1/72)*(31*sigma_3(n) - sigma_3(3*n) + 7*sigma(n) - sigma(3*n) - 30*n*sigma(n) + 6*n*sigma(3*n)). - Ridouane Oudra, Mar 21 2021

A374977 a(n) = Sum_{i+j+k+l=n, i,j,k,l >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l).

Original entry on oeis.org

0, 0, 0, 1, 12, 70, 280, 885, 2364, 5586, 12000, 23870, 44660, 79272, 134768, 220565, 349440, 538270, 807840, 1187004, 1706840, 2415150, 3354120, 4601870, 6209612, 8303610, 10935960, 14309640, 18460260, 23708184, 30044000, 37967925, 47368480, 59022432, 72633816
Offset: 1

Views

Author

Chai Wah Wu, Jul 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q, Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 4];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Jul 11 2025, after Alois P. Heinz in A319083 *)
  • Python
    from sympy import divisor_sigma
    def A374977(n): return sum((5*divisor_sigma(i+1,3)-(5+6*i)*divisor_sigma(i+1))*(5*divisor_sigma(n-i-1,3)-(5+6*(n-i-2))*divisor_sigma(n-i-1)) for i in range(1,n-2))//144

Formula

4-fold convolution of A000203.
Convolution of A000203 and A374951.
Convolution of A000385 with itself.
a(n) = Sum_{i=1..n-1} A000203(i)*A374951(n-i).
a(n) = Sum_{i=1..n-3} A000385(i)*A000385(n-i-2).
Column k=4 of A319083.
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / 52254720. - Vaclav Kotesovec, Sep 20 2024
Previous Showing 11-20 of 30 results. Next