cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 74 results. Next

A056279 Number of primitive (aperiodic) word structures of length n which contain exactly three different symbols.

Original entry on oeis.org

0, 0, 1, 6, 25, 89, 301, 960, 3024, 9305, 28501, 86430, 261625, 788669, 2375075, 7140720, 21457825, 64435896, 193448101, 580597110, 1742343323, 5228050949, 15686335501, 47063113320, 141197991000, 423610488665, 1270865802276, 3812663735790, 11438127792025, 34314649427035
Offset: 1

Views

Author

Keywords

Comments

Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A137651.
Cf. A056268.

Formula

a(n) = Sum_{d|n} mu(d)*A000392(n/d) where n>0.
G.f.: Sum_{k>=1} mu(k) * x^(3*k) / Product_{j=1..3} (1 - j*x^k). - Ilya Gutkovskiy, Apr 15 2021

Extensions

Terms a(26) and beyond from Andrew Howroyd, Apr 15 2021

A133800 Triangle read by rows in which row n gives number of ways to partition n labeled elements into k pie slices allowing the pie to be turned over (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 3, 1, 15, 25, 30, 12, 1, 31, 90, 195, 180, 60, 1, 63, 301, 1050, 1680, 1260, 360, 1, 127, 966, 5103, 12600, 15960, 10080, 2520, 1, 255, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 1, 511, 9330, 102315, 510300, 1369620
Offset: 1

Views

Author

Barry Cipra and N. J. A. Sloane, Jan 17 2008

Keywords

Examples

			Triangle begins:
1,
1,  1,
1,  3,   1,
1,  7,   6,    3,
1, 15,  25,   30,   12,
1, 31,  90,  195,  180,   60,
1, 63, 301, 1050, 1680, 1260, 360.
...
For row n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4 .. (1234)
k=4 .. k=3 ..k=2 . k=2 . k=1
(3)....(6)...(3)..(4)... (1)
		

Crossrefs

Row sums give A032262. Diagonals give A000225, A000392, A032263, A133799, A001710.

Programs

Formula

Take triangle of Stirling numbers of second kind (A008277) and multiply k-th column by A001710(k) (order of alternating group A_k).

Extensions

More terms from R. J. Mathar, Jan 18 2008

A249163 Triangle read by rows: the positive terms of A163626.

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 50, 24, 1, 180, 360, 1, 602, 3360, 720, 1, 1932, 25200, 20160, 1, 6050, 166824, 332640, 40320, 1, 18660, 1020600, 4233600, 1814400, 1, 57002, 5921520, 46070640, 46569600, 3628800, 1, 173052, 33105600, 451725120, 898128000, 239500800
Offset: 0

Views

Author

Paul Curtz, Dec 15 2014

Keywords

Comments

We have two possibilities: with or without 0's.
Without 0's:
1,
1,
1, 2,
1, 12,
1, 50, 24,
1, 180, 360,
etc.
Sum of every row: A000670(n).
First two terms of successive columns: 1, 1, 2, 12, 24, 360, ... = A211374.
With 0's:
1, 0, 0, 0,
1, 0, 0, 0,
1, 2, 0, 0,
1, 12, 0, 0,
1, 50, 24, 0,
1, 180, 360, 0,
1, 602, 3360, 720,
etc.
The columns are essentially A000012, A028243, A028246, A228909, A228911, A228913, from Stirling numbers of the second kind S(n,3), S(n,5), S(n,7), S(n,9), S(n,11), ... .

Crossrefs

Cf. A163626, A000670, A211374; also A000012, A000392, A000481, A000771, A049447, A028243, A028246, A091137, A228909, A163626, A228911, A228913 and Worpitzky numbers for the second Bernoulli numbers A164555(n)/A027642(n).

Programs

  • Mathematica
    Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest; Table[ Select[row[n], Positive] , {n, 0, 12}] // Flatten
    (* or, simply: *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten // Select[#, Positive]& (* Jean-François Alcover, Dec 16 2014 *)

A249999 Expansion of 1/((1-x)^2*(1-2*x)*(1-3*x)).

Original entry on oeis.org

1, 7, 32, 122, 423, 1389, 4414, 13744, 42245, 128771, 390396, 1179366, 3554467, 10696153, 32153978, 96592988, 290041089, 870647535, 2612991160, 7841070610, 23527406111, 70590606917, 211788597942, 635399348232, 1906265153533, 5718929678299, 17157057470324, 51471709281854
Offset: 0

Views

Author

Alex Ratushnyak, Dec 28 2014

Keywords

Crossrefs

Cf. A000392 (first differences), A094705, A243869, A249997.

Programs

  • Magma
    [(2*n +9 -2^(n+5) +3^(n+3))/4: n in [0..50]]; // G. C. Greubel, Jul 21 2022
    
  • Mathematica
    LinearRecurrence[{7,-17,17,-6}, {1,7,32,122}, 50] (* G. C. Greubel, Jul 21 2022 *)
    CoefficientList[Series[1/((1-x)^2(1-2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Feb 11 2025 *)
  • SageMath
    [(2*n+9 -2^(n+5) +3^(n+3))/4 for n in (0..50)] # G. C. Greubel, Jul 21 2022

Formula

G.f.: 1/((1-x)^2 * (1-2*x) * (1-3*x)).
a(n) = 9/4 - 2^(n+3) + n/2 + 3^(n+3)/4. - R. J. Mathar, Jan 09 2015
E.g.f.: (1/4)*((9 + 2*x) - 32*exp(x) + 27*exp(2*x))*exp(x). - G. C. Greubel, Jul 21 2022

A250118 Triangle read by rows: T(n,m) (n >= 1, 1 <= m <= n) = number of set partitions of [n], avoiding 12343, with m blocks.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 9, 1, 1, 31, 90, 52, 12, 1, 1, 63, 301, 246, 88, 15, 1, 1, 127, 966, 1039, 510, 133, 18, 1, 1, 255, 3025, 4083, 2569, 909, 187, 21, 1, 1, 511, 9330, 15274, 11790, 5296, 1470, 250, 24, 1, 1, 1023, 28501, 55152, 50644, 27678, 9706, 2220, 322, 27, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 25 2014

Keywords

Examples

			Triangle begins:
  1;
  1,    1;
  1,    3,     1;
  1,    7,     6,     1;
  1,   15,    25,     9,     1;
  1,   31,    90,    52,    12,     1;
  1,   63,   301,   246,    88,    15,    1;
  1,  127,   966,  1039,   510,   133,   18,    1;
  1,  255,  3025,  4083,  2569,   909,  187,   21,   1;
  1,  511,  9330, 15274, 11790,  5296, 1470,  250,  24,  1;
  1, 1023, 28501, 55152, 50644, 27678, 9706, 2220, 322, 27, 1;
  ...
		

Crossrefs

Cf. A112857, A250119. For diagonals see A000392, A163941.

Extensions

a(46)-a(66) from Lars Blomberg, Aug 17 2017

A260217 Number of base-3 n-digit pandigital numbers.

Original entry on oeis.org

0, 0, 4, 24, 100, 360, 1204, 3864, 12100, 37320, 114004, 346104, 1046500, 3155880, 9500404, 28566744, 85831300, 257756040, 773792404, 2322425784, 6969374500, 20912317800, 62745342004, 188252803224, 564791964100, 1694443001160, 5083463221204, 15250658099064
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 19 2015

Keywords

Comments

From Manfred Boergens, Aug 02 2023: (Start)
a(n+1) is the number of pairs (A,B) where A and B are nonempty subsets of {1,2,...,n} and one of these subsets is a proper subset of the other.
If "proper" is omitted, see A091344.
If empty subsets are included, see A027649 (all subsets) and A056182 (proper subsets). (End)

Examples

			a(3)=4 because, in base 3, there are four 3-digit pandigital numbers (11=102_3, 15=120_3, 19=201_3, and 21=210_3).
a(4)=24 because, in base 3, there are 24 4-digit pandigital numbers (1002_3, 1012_3, 1020_3, 1021_3, 1022_3, 1102_3, 1120_3, 1200_3, 1201_3, 1202_3, 1210_3, 1220_3, 2001_3, 2010_3, 2011_3, 2012_3, 2021_3, 2100_3, 2101_3, 2102_3, 2110_3, 2120_3, 2201_3, and 2210_3).
		

Crossrefs

Programs

  • Magma
    [2*3^(n-1) - 2^(n+1) + 2: n in [1..30]]; // Vincenzo Librandi, Jul 20 2015
  • Mathematica
    Table[2 3^(n - 1) - 2^(n + 1) + 2, {n, 30}] (* Vincenzo Librandi, Jul 20 2015 *)

Formula

a(n) = 2*A028243(n) = 2*3^(n-1) - 2^(n+1) + 2.
a(n) = 4*A000392(n).
G.f.: 4*x^3/((1-x)*(1-2*x)*(1-3*x)).
E.g.f.: 2/3*((exp(x)-1)^3).

A327610 Number of length n reversible string structures that are not palindromic using exactly three different colors.

Original entry on oeis.org

0, 0, 1, 4, 14, 49, 154, 496, 1520, 4705, 14266, 43384, 130844, 394849, 1187614, 3571936, 10729040, 32222785, 96724306, 290313064, 871172324, 2614069249, 7843168774, 23531688976, 70598997560, 211805640865, 635432906746, 1906333059544, 5719063904204
Offset: 1

Views

Author

Andrew Howroyd, Sep 18 2019

Keywords

Crossrefs

Column k=3 of A309748.

Programs

  • PARI
    concat([0,0], Vec((1 - 2*x - 4*x^2 + 13*x^3 - 9*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x^2)*(1 - 3*x^2)) + O(x^30)))

Formula

a(n) = A056327 - A000392(ceiling(n/2)).
a(n) = 6*a(n-1) - 6*a(n-2) - 24*a(n-3) + 49*a(n-4) + 6*a(n-5) - 66*a(n-6) + 36*a(n-7) for n > 7.
G.f.: x^3*(1 - 2*x - 4*x^2 + 13*x^3 - 9*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x^2)*(1 - 3*x^2)).

A337313 a(n) is the number of n-digit positive integers with exactly three distinct base 10 digits.

Original entry on oeis.org

0, 0, 648, 3888, 16200, 58320, 195048, 625968, 1960200, 6045840, 18468648, 56068848, 169533000, 511252560, 1539065448, 4627812528, 13904670600, 41756478480, 125354369448, 376232977008, 1129038669000, 3387795483600, 10164745404648, 30496954122288, 91496298184200
Offset: 1

Views

Author

Stefano Spezia, Aug 22 2020

Keywords

Comments

a(n) is the number of n-digit numbers in A031962.

Examples

			a(1) = a(2) = 0 since the positive integers must have at least three digits;
a(3) = #{xyz in N | x,y,z are three different digits with x != 0} = 9*9*8 = 648;
a(4) = 3888 since #[9999] - #[999] - #(1111*[9]) - A335843(4) - #{xywz in N | x,y,w,z are four different digits with x != 0} = 9999 - 999 - 9 - 567 - 9*9*8*7 = 3888;
...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-11,6},{0,0,648},26]
  • PARI
    concat([0,0],Vec(648*x^3/(1-6*x+11*x^2-6*x^3)+O(x^26)))

Formula

O.g.f.: 648*x^3/(1 - 6*x + 11*x^2 - 6*x^3).
E.g.f.: 108*(exp(x) - 1)^3.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n > 3.
a(n) = 648*S2(n, 3) where S2(n, 3) = A000392(n).
a(n) = 324*(3^(n-1) - 2^n + 1).
a(n) ~ 108 * 3^n.
a(n) = 324*(A000244(n-1) - A000225(n)).
a(n) = A337127(n, 3).

A346390 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^3 / 3! ).

Original entry on oeis.org

1, 6, 25, 100, 511, 3626, 30045, 262800, 2470171, 25889446, 302003065, 3821936300, 51672723831, 745789322466, 11505096936085, 189023074558600, 3288243760145491, 60319276499454686, 1164282909466221105, 23603464830964817700, 501435697062735519151
Offset: 3

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
    a[n_] := a[n] = StirlingS2[n, 3] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(-log(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 09 2021

Formula

a(n) = Stirling2(n,3) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,3) * k * a(k).
a(n) ~ (n-1)! / (log(6^(1/3)+1))^n. - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(k * 6^k). - Seiichi Manyama, Jan 23 2025

A052761 a(n) = 3!*n*S(n-1,3), where S denotes the Stirling numbers of second kind.

Original entry on oeis.org

0, 0, 0, 0, 24, 180, 900, 3780, 14448, 52164, 181500, 615780, 2052072, 6749028, 21976500, 71007300, 228009696, 728451972, 2317445100, 7346047140, 23213772120, 73156412196, 229989358500, 721474964100, 2258832312144, 7059480120900, 22026886599900
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0},Table[3!*n*StirlingS2[n-1,3],{n,30}]] (* Harvey P. Dale, Feb 07 2015 *)
  • PARI
    a(n)={if(n>=1, 3!*n*stirling(n-1, 3, 2), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: exp(x)^3*x - 3*exp(x)^2*x + 3*x*exp(x) - x.
Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (-36*n^2 - 66*n - 6*n^3 - 36)*a(n) + (11*n^3 + 55*n^2 + 66*n)*a(n+1) + (-6*n^3 - 24*n^2 - 18*n)*a(n+2) + (n^3 + 3*n^2 + 2*n)*a(n+3)}
For n>=2, a(n) = n*(3^(n-1) - 3*2^(n-1) + 3). - Vaclav Kotesovec, Nov 27 2012
O.g.f.: 12*x^4*(2 - 9*x + 11*x^2 - 3*x^3)/((1 - 3*x)^2*(1 - 2*x)^2*(1 - x)^2). - Matthew House, Feb 16 2017 [Corrected by Georg Fischer, May 19 2019]
From Andrew Howroyd, Aug 08 2020: (Start)
a(n) = n*A001117(n-1) for n > 1.
E.g.f.: x*(exp(x) - 1)^3. (End)

Extensions

Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
More terms from Harvey P. Dale, Feb 07 2015
Previous Showing 41-50 of 74 results. Next