A056279
Number of primitive (aperiodic) word structures of length n which contain exactly three different symbols.
Original entry on oeis.org
0, 0, 1, 6, 25, 89, 301, 960, 3024, 9305, 28501, 86430, 261625, 788669, 2375075, 7140720, 21457825, 64435896, 193448101, 580597110, 1742343323, 5228050949, 15686335501, 47063113320, 141197991000, 423610488665, 1270865802276, 3812663735790, 11438127792025, 34314649427035
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A133800
Triangle read by rows in which row n gives number of ways to partition n labeled elements into k pie slices allowing the pie to be turned over (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 3, 1, 15, 25, 30, 12, 1, 31, 90, 195, 180, 60, 1, 63, 301, 1050, 1680, 1260, 360, 1, 127, 966, 5103, 12600, 15960, 10080, 2520, 1, 255, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 1, 511, 9330, 102315, 510300, 1369620
Offset: 1
Triangle begins:
1,
1, 1,
1, 3, 1,
1, 7, 6, 3,
1, 15, 25, 30, 12,
1, 31, 90, 195, 180, 60,
1, 63, 301, 1050, 1680, 1260, 360.
...
For row n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4 .. (1234)
k=4 .. k=3 ..k=2 . k=2 . k=1
(3)....(6)...(3)..(4)... (1)
-
A001710 := proc(n) if n < 2 then 1; else n!/2 ; fi ; end: A008277 := proc(n,k) combinat[stirling2](n,k) ; end: A133800 := proc(n,k) A008277(n,k)*A001710(k-1) ; end: for n from 1 to 10 do for k from 1 to n do printf("%d, ",A133800(n,k)) ; od: od: # R. J. Mathar, Jan 18 2008
-
A001710[n_] := If[n<2, 1, n!/2]; A008277[n_, k_] := StirlingS2[n, k]; A133800[n_, k_] := A008277[n, k]*A001710[k-1]; Table[A133800[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014, after R. J. Mathar *)
(* A (n >= 0, k >= 0)-based version: *)
A133800[n_, k_] := k! StirlingS2[n+1, k+1] / If[k>1, 2, 1];
Table[A133800[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 19 2017 *)
A249163
Triangle read by rows: the positive terms of A163626.
Original entry on oeis.org
1, 1, 1, 2, 1, 12, 1, 50, 24, 1, 180, 360, 1, 602, 3360, 720, 1, 1932, 25200, 20160, 1, 6050, 166824, 332640, 40320, 1, 18660, 1020600, 4233600, 1814400, 1, 57002, 5921520, 46070640, 46569600, 3628800, 1, 173052, 33105600, 451725120, 898128000, 239500800
Offset: 0
Cf.
A163626,
A000670,
A211374; also
A000012,
A000392,
A000481,
A000771,
A049447,
A028243,
A028246,
A091137,
A228909,
A163626,
A228911,
A228913 and Worpitzky numbers for the second Bernoulli numbers
A164555(n)/
A027642(n).
-
Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest; Table[ Select[row[n], Positive] , {n, 0, 12}] // Flatten
(* or, simply: *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten // Select[#, Positive]& (* Jean-François Alcover, Dec 16 2014 *)
A249999
Expansion of 1/((1-x)^2*(1-2*x)*(1-3*x)).
Original entry on oeis.org
1, 7, 32, 122, 423, 1389, 4414, 13744, 42245, 128771, 390396, 1179366, 3554467, 10696153, 32153978, 96592988, 290041089, 870647535, 2612991160, 7841070610, 23527406111, 70590606917, 211788597942, 635399348232, 1906265153533, 5718929678299, 17157057470324, 51471709281854
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, A partial recurrence Fibonacci link, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 2, p. 534.
- Index entries for linear recurrences with constant coefficients, signature (7,-17,17,-6).
-
[(2*n +9 -2^(n+5) +3^(n+3))/4: n in [0..50]]; // G. C. Greubel, Jul 21 2022
-
LinearRecurrence[{7,-17,17,-6}, {1,7,32,122}, 50] (* G. C. Greubel, Jul 21 2022 *)
CoefficientList[Series[1/((1-x)^2(1-2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Feb 11 2025 *)
-
[(2*n+9 -2^(n+5) +3^(n+3))/4 for n in (0..50)] # G. C. Greubel, Jul 21 2022
A250118
Triangle read by rows: T(n,m) (n >= 1, 1 <= m <= n) = number of set partitions of [n], avoiding 12343, with m blocks.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 9, 1, 1, 31, 90, 52, 12, 1, 1, 63, 301, 246, 88, 15, 1, 1, 127, 966, 1039, 510, 133, 18, 1, 1, 255, 3025, 4083, 2569, 909, 187, 21, 1, 1, 511, 9330, 15274, 11790, 5296, 1470, 250, 24, 1, 1, 1023, 28501, 55152, 50644, 27678, 9706, 2220, 322, 27, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 6, 1;
1, 15, 25, 9, 1;
1, 31, 90, 52, 12, 1;
1, 63, 301, 246, 88, 15, 1;
1, 127, 966, 1039, 510, 133, 18, 1;
1, 255, 3025, 4083, 2569, 909, 187, 21, 1;
1, 511, 9330, 15274, 11790, 5296, 1470, 250, 24, 1;
1, 1023, 28501, 55152, 50644, 27678, 9706, 2220, 322, 27, 1;
...
A260217
Number of base-3 n-digit pandigital numbers.
Original entry on oeis.org
0, 0, 4, 24, 100, 360, 1204, 3864, 12100, 37320, 114004, 346104, 1046500, 3155880, 9500404, 28566744, 85831300, 257756040, 773792404, 2322425784, 6969374500, 20912317800, 62745342004, 188252803224, 564791964100, 1694443001160, 5083463221204, 15250658099064
Offset: 1
a(3)=4 because, in base 3, there are four 3-digit pandigital numbers (11=102_3, 15=120_3, 19=201_3, and 21=210_3).
a(4)=24 because, in base 3, there are 24 4-digit pandigital numbers (1002_3, 1012_3, 1020_3, 1021_3, 1022_3, 1102_3, 1120_3, 1200_3, 1201_3, 1202_3, 1210_3, 1220_3, 2001_3, 2010_3, 2011_3, 2012_3, 2021_3, 2100_3, 2101_3, 2102_3, 2110_3, 2120_3, 2201_3, and 2210_3).
- Svenja Huntemann, Values, Temperatures, and Enumeration of Placement Games, Slides, Alberta-Montana Combinatorics and Algorithms Day, Banff, Canada, 23-25 June 2023. See p. 105/109.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
A327610
Number of length n reversible string structures that are not palindromic using exactly three different colors.
Original entry on oeis.org
0, 0, 1, 4, 14, 49, 154, 496, 1520, 4705, 14266, 43384, 130844, 394849, 1187614, 3571936, 10729040, 32222785, 96724306, 290313064, 871172324, 2614069249, 7843168774, 23531688976, 70598997560, 211805640865, 635432906746, 1906333059544, 5719063904204
Offset: 1
A337313
a(n) is the number of n-digit positive integers with exactly three distinct base 10 digits.
Original entry on oeis.org
0, 0, 648, 3888, 16200, 58320, 195048, 625968, 1960200, 6045840, 18468648, 56068848, 169533000, 511252560, 1539065448, 4627812528, 13904670600, 41756478480, 125354369448, 376232977008, 1129038669000, 3387795483600, 10164745404648, 30496954122288, 91496298184200
Offset: 1
a(1) = a(2) = 0 since the positive integers must have at least three digits;
a(3) = #{xyz in N | x,y,z are three different digits with x != 0} = 9*9*8 = 648;
a(4) = 3888 since #[9999] - #[999] - #(1111*[9]) - A335843(4) - #{xywz in N | x,y,w,z are four different digits with x != 0} = 9999 - 999 - 9 - 567 - 9*9*8*7 = 3888;
...
-
LinearRecurrence[{6,-11,6},{0,0,648},26]
-
concat([0,0],Vec(648*x^3/(1-6*x+11*x^2-6*x^3)+O(x^26)))
A346390
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^3 / 3! ).
Original entry on oeis.org
1, 6, 25, 100, 511, 3626, 30045, 262800, 2470171, 25889446, 302003065, 3821936300, 51672723831, 745789322466, 11505096936085, 189023074558600, 3288243760145491, 60319276499454686, 1164282909466221105, 23603464830964817700, 501435697062735519151
Offset: 3
-
nmax = 23; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
a[n_] := a[n] = StirlingS2[n, 3] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(-log(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 09 2021
A052761
a(n) = 3!*n*S(n-1,3), where S denotes the Stirling numbers of second kind.
Original entry on oeis.org
0, 0, 0, 0, 24, 180, 900, 3780, 14448, 52164, 181500, 615780, 2052072, 6749028, 21976500, 71007300, 228009696, 728451972, 2317445100, 7346047140, 23213772120, 73156412196, 229989358500, 721474964100, 2258832312144, 7059480120900, 22026886599900
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Join[{0},Table[3!*n*StirlingS2[n-1,3],{n,30}]] (* Harvey P. Dale, Feb 07 2015 *)
-
a(n)={if(n>=1, 3!*n*stirling(n-1, 3, 2), 0)} \\ Andrew Howroyd, Aug 08 2020
Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
Comments