A294032
Triangle read by rows, T(n, k) = Pochhammer(3, k)*Stirling2(3 + n, 3 + k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 6, 3, 25, 30, 12, 90, 195, 180, 60, 301, 1050, 1680, 1260, 360, 966, 5103, 12600, 15960, 10080, 2520, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
Offset: 0
Triangle starts:
[0] 1
[1] 6, 3
[2] 25, 30, 12
[3] 90, 195, 180, 60
[4] 301, 1050, 1680, 1260, 360
[5] 966, 5103, 12600, 15960, 10080, 2520
[6] 3025, 23310, 83412, 158760, 166320, 90720, 20160
[7] 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
-
A294032 := (n, k) -> pochhammer(3, k)*Stirling2(n + 3, k + 3):
seq(seq(A294032(n, k), k=0..n), n=0..7);
T := (n, k) -> A293617(3, n, k): seq(seq(T(n, k), k=0..n), n=0..7);
-
Table[Pochhammer[3, k] StirlingS2[3 + n, 3 + k], {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 22 2017 *)
-
for(n=0,10, for(k=0,n, print1((k+2)!*stirling(n+3,k+3,2)/2, ", "))) \\ G. C. Greubel, Nov 19 2017
A341617
Repair factors for Stirling numbers of the second kind.
Original entry on oeis.org
1, 1, 2, 6, 12, 60, 30, 210, 840, 2520, 1260, 13860, 13860, 180180, 90090, 30030, 240240, 4084080, 6126120, 116396280, 58198140, 58198140
Offset: 1
The statement that a(3) = 2 means that the sequence of Stirling numbers S_3 = (1, 6, 25, 90, ...) (that is, the sequence A000392 with an offset of 3) does not have the property of counting periodic points for some map, but does have this property after multiplication by 2 (which gives A028243 with an offset of 2), and 2 is the smallest integer with this property. This specific value is immediately known to be exact, because a(3) divides (3-1)! = 2.
A346842
E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^3 / 3!.
Original entry on oeis.org
1, 10, 75, 520, 3556, 24626, 174805, 1279240, 9677151, 75750752, 613656836, 5142797660, 44557627661, 398786697398, 3683575764083, 35084121263136, 344242894197456, 3476490965903174, 36104281709286841, 385257741260565844, 4220537246457019687, 47432055430482106880
Offset: 3
-
b:= proc(n, m) option remember;
`if`(n=0, binomial(m, 3), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=3..24); # Alois P. Heinz, Aug 05 2021
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^3/3!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
Table[Sum[StirlingS2[n, k] Binomial[k, 3], {k, 0, n}], {n, 3, 24}]
Table[Sum[Binomial[n, k] StirlingS2[k, 3] BellB[n - k], {k, 0, n}], {n, 3, 24}]
Table[(BellB[n+3] - 6*BellB[n+2] + 8*BellB[n+1] - BellB[n])/6, {n, 3, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^3/3!)) \\ Michel Marcus, Aug 06 2021
A384988
a(n) = Stirling2(n,2)^2 + Stirling2(n,3).
Original entry on oeis.org
0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1
3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press.
- Eric Weisstein's World of Mathematics, Complete Multipartite Graph.
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
[(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
-
Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]
A057668
Number of minimal 7-covers of a labeled n-set.
Original entry on oeis.org
1, 988, 549102, 226064280, 76785889587, 22762819040676, 6092115565691584, 1505097773271664000, 348617485585838373333, 76564317282173987801964, 16080209472530744351164146, 3250906483045575317042337960, 635954979082842132795003641239
Offset: 7
A123212
Let S(1) = {1} and, for n > 1, let S(n) be the smallest set containing x, 2x and x^2 for each element x in S(n-1). a(n) is the sum of the elements in S(n).
Original entry on oeis.org
1, 3, 7, 31, 383, 71679, 4313284607, 18447026747376402431, 340282367000167840050178713574329810943, 115792089237316195429848086745536112650120661123018741407845920610578123980799
Offset: 1
Under the indicated set mapping we have {1} -> {1,2} -> {1,2,4} -> {1,2,4,8,16}, giving the sums a(1)=1, a(2)=3, a(3)=7, a(4)=31, etc.
-
s:= proc(n) option remember; `if`(n=1, 1,
map(x-> [x, 2*x, x^2][], {s(n-1)})[])
end:
a:= n-> add(i, i=s(n)):
seq(a(n), n=1..10); # Alois P. Heinz, Jan 12 2022
-
S[n_] := S[n] = If[n == 1, {1}, {#, 2#, #^2}& /@ S[n-1] // Flatten // Union];
a[n_] := S[n] // Total;
Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Apr 22 2022 *)
-
from itertools import chain, islice
def A123212_gen(): # generator of terms
s = {1}
while True:
yield sum(s)
s = set(chain.from_iterable((x,2*x,x**2) for x in s))
A123212_list = list(islice(A123212_gen(),10)) # Chai Wah Wu, Jan 12 2022
A129839
a(n) = Stirling_2(n,3)^2.
Original entry on oeis.org
0, 0, 0, 1, 36, 625, 8100, 90601, 933156, 9150625, 87048900, 812307001, 7486748676, 68447640625, 622473660900, 5641104760201, 51003678922596, 460438253730625, 4152386009780100, 37422167780506201, 337103845136750916, 3035761307578140625, 27332814735512302500
Offset: 0
- H. S. Wilf, A lot of toast, with a side order of roast, manuscript, Jan 04 2002.
- Index entries for linear recurrences with constant coefficients, signature (25,-239,1115,-2664,3060,-1296).
-
StirlingS2[Range[0,30],3]^2 (* Harvey P. Dale, Jan 03 2013 *)
-
a(n)=(3^n-3<Charles R Greathouse IV, Jan 03 2013
-
[stirling_number2(n,3)^2for n in range(0,23)] # Zerinvary Lajos, Mar 14 2009
Definition corrected (exponent changed from 3 to 2) by
Harvey P. Dale, Jan 03 2013
A134165
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 3) x = y.
Original entry on oeis.org
1, 3, 8, 24, 86, 348, 1478, 6324, 26846, 112668, 467798, 1925124, 7867406, 31980588, 129475718, 522603924, 2104600766, 8461122108, 33972973238, 136278002724, 546271650926
Offset: 0
a(2) = 8 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 1 {{1},{2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 2.
-
LinearRecurrence[{10,-35,50,-24},{1,3,8,24},30] (* Harvey P. Dale, Feb 29 2020 *)
A144521
Tetrahedral numbers k*(k+1)*(k+2)/6 such that exactly one of k, k+1, and k+2 is prime.
Original entry on oeis.org
0, 20, 56, 84, 165, 220, 364, 455, 680, 816, 1140, 1330, 1771, 2024, 2300, 3654, 4060, 4960, 5456, 7770, 8436, 9139, 10660, 11480, 13244, 14190, 16215, 17296, 18424, 23426, 24804, 26235, 32509, 34220, 37820, 39711, 47905, 50116, 52394, 57155
Offset: 1
k=0: Of the three numbers (0,1,2), exactly one is prime, so 0*1*2/6 = 0 is in the sequence.
k=1: Of the three numbers (1,2,3), exactly two are prime, so 1*2*3/6 = 1 is not in the sequence.
k=4: Of the three numbers (4,5,6), exactly one is prime, so 4*5*6/6 = 20 is in the sequence.
-
isPr := proc(n) if isprime(n) then 1; else 0; end if; end proc: for n from 0 to 300 do if isPr(n)+isPr(n+1)+isPr(n+2) = 1 then printf("%d,",n*(n+1)*(n+2)/6 ) ; end if; end do: # R. J. Mathar, May 01 2010
Corrected (455, 14190, 17296 inserted, 16560 removed etc.) by
R. J. Mathar, May 01 2010
A144523
Triangular numbers n*(n+1)/2 with n and n+1 composite, where number of prime factors in n > number of prime factors in n+1.
Original entry on oeis.org
36, 210, 300, 528, 1035, 1176, 1275, 1485, 1596, 2080, 2346, 2926, 3240, 3321, 3570, 4095, 4278, 5460, 5565, 6105, 6555, 6903, 7260, 8256, 8778, 9870, 10440, 11628, 11935, 12880, 13695, 14196, 15576, 16653, 17020, 17391, 17955, 20100, 20910, 21736, 22578, 23436, 24310, 25200, 25425
Offset: 1
If n=8=2*2*2(number of prime factors = 3) and n+1=9=3*3(number of prime factors = 2), then 8*9/2=36=a(1). If n=20=2*2*5(number of prime factors = 3) and n+1=21=3*7(number of prime factors = 2), then 20*21/2=210=a(2). If n=24=2*2*2*3(number of prime factors = 4) and n+1=25=5*5(number of prime factors = 2), then 24*25/2=300=a(3), etc.
-
(Times@@#)/2&/@Select[Partition[Range[250],2,1],AllTrue[ #,CompositeQ] && PrimeOmega[#[[1]]]>PrimeOmega[#[[2]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2020 *)
Corrected definition. 2926 inserted and extended. -
R. J. Mathar, Jan 17 2009
Comments