cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 74 results. Next

A294032 Triangle read by rows, T(n, k) = Pochhammer(3, k)*Stirling2(3 + n, 3 + k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 6, 3, 25, 30, 12, 90, 195, 180, 60, 301, 1050, 1680, 1260, 360, 966, 5103, 12600, 15960, 10080, 2520, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
Offset: 0

Views

Author

Peter Luschny, Oct 22 2017

Keywords

Examples

			Triangle starts:
[0]    1
[1]    6,      3
[2]   25,     30,     12
[3]   90,    195,    180,      60
[4]  301,   1050,   1680,    1260,     360
[5]  966,   5103,  12600,   15960,   10080,    2520
[6] 3025,  23310,  83412,  158760,  166320,   90720,  20160
[7] 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
		

Crossrefs

T(n, 0) = A000392(n+3), T(n, n) = A001710(n+2).
Row sums A002051(n+3), alternating row sums A000225(n+1).
Cf. A028246 (m=1), A053440 (m=2), this seq. (m=3), A293617 (hub).

Programs

  • Maple
    A294032 := (n, k) -> pochhammer(3, k)*Stirling2(n + 3, k + 3):
    seq(seq(A294032(n, k), k=0..n), n=0..7);
    T := (n, k) -> A293617(3, n, k): seq(seq(T(n, k), k=0..n), n=0..7);
  • Mathematica
    Table[Pochhammer[3, k] StirlingS2[3 + n, 3 + k], {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 22 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((k+2)!*stirling(n+3,k+3,2)/2, ", "))) \\ G. C. Greubel, Nov 19 2017

Formula

E.g.f.: (1/2)*exp(x)*(2*y + 9*exp(2*x) + y^2+1-11*exp(3*x)*y + 15*y^2*exp(2*x) - 7*y^2*exp(x) - 13*y^2*exp(3*x) + 4*exp(4*x)*y^2 - 8*exp(x) + 24*y*exp(2*x) - 15*y*exp(x))/(1 - y*(exp(x) - 1))^3.
T(n, k) = A293617(3, n, k).

A341617 Repair factors for Stirling numbers of the second kind.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 30, 210, 840, 2520, 1260, 13860, 13860, 180180, 90090, 30030, 240240, 4084080, 6126120, 116396280, 58198140, 58198140
Offset: 1

Views

Author

Thomas Ward, Feb 16 2021

Keywords

Comments

a(k) is the smallest number with the property that the sequence (a(k)*S(n+k-1, k))_{n>=1}, viewed as a sequence in n, counts the periodic points of some map. Here S(n, k) denotes the Stirling numbers of the second kind, so S(n, k) is the number of ways to partition a set of n elements into k nonempty subsets.
Because these numbers relate to properties of the Stirling number sequence S(n, k) viewed as a sequence in n, it is natural to think of these values as indexed by k.
The values generated by a finite calculation are inherently empirical, calculated as the least common multiple of the first 3000 terms and then checked for the repair property for period up to 50,000. For smaller values of k (those listed here) various ad hoc arguments can be used to check the empirical candidate values.
The empirical values can be calculated using a simple PARI code, and this only gives a possible candidate value for a(k). If that value happens to be (k-1)! then it is correct. If it is a strict divisor of (k-1)! then further checks are needed for each prime in the quotient (candidate value)/(k-1)!. The potentially unbounded nature of the calculation required would make a proof of a closed formula particularly interesting.
(EMPIRICAL PARI CODE TO GENERATE CANDIDATE VALUES) for(k=1, 40, a=vector(3000, n, stirling(n+k-1, k, 2)); b=vector(length(a), n, (1/n)*sumdiv(n, d, moebius(n/d)*a[d])); print1(denominator(b)", "))

Examples

			The statement that a(3) = 2 means that the sequence of Stirling numbers S_3 = (1, 6, 25, 90, ...) (that is, the sequence A000392 with an offset of 3) does not have the property of counting periodic points for some map, but does have this property after multiplication by 2 (which gives A028243 with an offset of 2), and 2 is the smallest integer with this property. This specific value is immediately known to be exact, because a(3) divides (3-1)! = 2.
		

Crossrefs

Formula

It is known that a(k) divides (k-1)!.
There is an explicit formula for a(k), but it involves an in principle infinite calculation as follows: compute the set of rational numbers {(1/n) Sum_{d|n} mu(n/d)*S(d+k-1, k): n>=1}, and then define a(k) to be the least common multiple of the denominators of that (possibly infinite) set of rational numbers. Here mu denotes the classical Möbius function, and the sum is taken over the divisors d of n. Strictly speaking, any calculation only gives candidate values which are initially only known to be a factor of the real value, which in turn is a factor of (k-1)!. For small values of k listed above ad hoc arguments are needed to check the candidate values evaluated as the least common multiple of the denominators of the first 3000 terms.

A346842 E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^3 / 3!.

Original entry on oeis.org

1, 10, 75, 520, 3556, 24626, 174805, 1279240, 9677151, 75750752, 613656836, 5142797660, 44557627661, 398786697398, 3683575764083, 35084121263136, 344242894197456, 3476490965903174, 36104281709286841, 385257741260565844, 4220537246457019687, 47432055430482106880
Offset: 3

Views

Author

Ilya Gutkovskiy, Aug 05 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, binomial(m, 3), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=3..24);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^3/3!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
    Table[Sum[StirlingS2[n, k] Binomial[k, 3], {k, 0, n}], {n, 3, 24}]
    Table[Sum[Binomial[n, k] StirlingS2[k, 3] BellB[n - k], {k, 0, n}], {n, 3, 24}]
    Table[(BellB[n+3] - 6*BellB[n+2] + 8*BellB[n+1] - BellB[n])/6, {n, 3, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^3/3!)) \\ Michel Marcus, Aug 06 2021

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * binomial(k,3).
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(k,3) * Bell(n-k).
a(n) = (Bell(n+3) - 6*Bell(n+2) + 8*Bell(n+1) - Bell(n))/6. - Vaclav Kotesovec, Aug 06 2021
a(n) ~ exp(-1 - n + n/LambertW(n)) * (n - LambertW(n))^3 * n^n / (6 * sqrt(1 + LambertW(n)) * LambertW(n)^(n+3)). - Vaclav Kotesovec, Jun 28 2022

A384988 a(n) = Stirling2(n,2)^2 + Stirling2(n,3).

Original entry on oeis.org

0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1

Views

Author

Julian Allagan, Jun 14 2025

Keywords

Comments

Also, one third of the number of proper vertex colorings of the n-complete tripartite graph using exactly 5 interchangeable colors.
The complete 3-partite graph K(n,n,n) has 3n vertices partitioned into three sets of size n each, with edges between every pair of vertices from different sets. 3*a(n) = 0 for n < 2 because we need at least 2 vertices per partition to create 5 nonempty independent sets.

Examples

			3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
		

Crossrefs

Programs

  • Magma
    [(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
  • Mathematica
    Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]

Formula

3*a(n) = 2^(2*n - 2) + (1/2)*3^(n - 1) - 3*2^(n - 1) + 3/2 for n >= 1.
G.f.: 1/(4*(1 - 4*x)) + 1/(6*(1 - 3*x)) - 3/(2*(1 - 2*x)) + 3/(2*(1 - x)).
a(n) = A385432(n, 5) / 3 = A060867(n-1) + A000392(n).
From Stefano Spezia, Jun 14 2025: (Start)
a(n) = (6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4.
E.g.f.: (exp(x) - 1)^2*(3*exp(2*x) + 8*exp(x) - 5)/12. (End)
a(n) = A000453(n+2) -10*A000453(n). - R. J. Mathar, Jul 20 2025

A057668 Number of minimal 7-covers of a labeled n-set.

Original entry on oeis.org

1, 988, 549102, 226064280, 76785889587, 22762819040676, 6092115565691584, 1505097773271664000, 348617485585838373333, 76564317282173987801964, 16080209472530744351164146, 3250906483045575317042337960, 635954979082842132795003641239
Offset: 7

Views

Author

Vladeta Jovovic, Oct 16 2000

Keywords

Crossrefs

Formula

a(n) = (1/7!) * (127^n - 7 * 126^n + 21 * 125^n - 35 * 124^n + 35 * 123^n - 21 * 122^n + 7 * 121^n - 120^n).
G.f.: x^7 / ((120*x-1)*(121*x-1)*(122*x-1)*(123*x-1)*(124*x-1)*(125*x-1)*(126*x-1)*(127*x-1)). - Colin Barker, Jul 11 2013

Extensions

Additional term from Colin Barker, Jul 11 2013

A123212 Let S(1) = {1} and, for n > 1, let S(n) be the smallest set containing x, 2x and x^2 for each element x in S(n-1). a(n) is the sum of the elements in S(n).

Original entry on oeis.org

1, 3, 7, 31, 383, 71679, 4313284607, 18447026747376402431, 340282367000167840050178713574329810943, 115792089237316195429848086745536112650120661123018741407845920610578123980799
Offset: 1

Views

Author

John W. Layman, Oct 05 2006

Keywords

Comments

If we take the cardinality of the set S(n) instead of the sum, we get the Fibonacci numbers 1,2,3,5,8,13,21,34,... If the set mapping uses x -> x, 2x and 3x instead of x -> x, 2x, and x^2, the corresponding sequence consists of the Stirling numbers of the second kind: 1, 6, 25, 90, 301, 966, 3025, ... (A000392).

Examples

			Under the indicated set mapping we have {1} -> {1,2} -> {1,2,4} -> {1,2,4,8,16}, giving the sums a(1)=1, a(2)=3, a(3)=7, a(4)=31, etc.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n=1, 1,
          map(x-> [x, 2*x, x^2][], {s(n-1)})[])
        end:
    a:= n-> add(i, i=s(n)):
    seq(a(n), n=1..10);  # Alois P. Heinz, Jan 12 2022
  • Mathematica
    S[n_] := S[n] = If[n == 1, {1}, {#, 2#, #^2}& /@ S[n-1] // Flatten // Union];
    a[n_] := S[n] // Total;
    Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Apr 22 2022 *)
  • Python
    from itertools import chain, islice
    def A123212_gen(): # generator of terms
        s = {1}
        while True:
            yield sum(s)
            s = set(chain.from_iterable((x,2*x,x**2) for x in s))
    A123212_list = list(islice(A123212_gen(),10)) # Chai Wah Wu, Jan 12 2022

A129839 a(n) = Stirling_2(n,3)^2.

Original entry on oeis.org

0, 0, 0, 1, 36, 625, 8100, 90601, 933156, 9150625, 87048900, 812307001, 7486748676, 68447640625, 622473660900, 5641104760201, 51003678922596, 460438253730625, 4152386009780100, 37422167780506201, 337103845136750916, 3035761307578140625, 27332814735512302500
Offset: 0

Views

Author

N. J. A. Sloane, Feb 08 2008

Keywords

Crossrefs

Cf. A000392.

Programs

  • Mathematica
    StirlingS2[Range[0,30],3]^2 (* Harvey P. Dale, Jan 03 2013 *)
  • PARI
    a(n)=(3^n-3<Charles R Greathouse IV, Jan 03 2013
  • Sage
    [stirling_number2(n,3)^2for n in range(0,23)] # Zerinvary Lajos, Mar 14 2009
    

Formula

G.f.: x^3*(1+11*x-36*x^2-36*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)*(1-9*x)).
a(n) = (3^n - 3*2^n + 3)^2/36 for n>0. - Charles R Greathouse IV, Jan 03 2013

Extensions

Definition corrected (exponent changed from 3 to 2) by Harvey P. Dale, Jan 03 2013

A134165 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 3) x = y.

Original entry on oeis.org

1, 3, 8, 24, 86, 348, 1478, 6324, 26846, 112668, 467798, 1925124, 7867406, 31980588, 129475718, 522603924, 2104600766, 8461122108, 33972973238, 136278002724, 546271650926
Offset: 0

Views

Author

Ross La Haye, Jan 12 2008

Keywords

Examples

			a(2) = 8 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 1 {{1},{2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{1,3,8,24},30] (* Harvey P. Dale, Feb 29 2020 *)

Formula

a(n) = (1/2)(4^n - 2*3^n + 5*2^n - 2) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + 2*StirlingS2(n+1,2) + 1.
G.f.: (1-7*x+13*x^2-x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). [Colin Barker, Jul 30 2012]

A144521 Tetrahedral numbers k*(k+1)*(k+2)/6 such that exactly one of k, k+1, and k+2 is prime.

Original entry on oeis.org

0, 20, 56, 84, 165, 220, 364, 455, 680, 816, 1140, 1330, 1771, 2024, 2300, 3654, 4060, 4960, 5456, 7770, 8436, 9139, 10660, 11480, 13244, 14190, 16215, 17296, 18424, 23426, 24804, 26235, 32509, 34220, 37820, 39711, 47905, 50116, 52394, 57155
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 15 2008

Keywords

Examples

			k=0: Of the three numbers (0,1,2), exactly one is prime, so 0*1*2/6 = 0 is in the sequence.
k=1: Of the three numbers (1,2,3), exactly two are prime, so 1*2*3/6 = 1 is not in the sequence.
k=4: Of the three numbers (4,5,6), exactly one is prime, so 4*5*6/6 = 20 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isPr := proc(n) if isprime(n) then 1; else 0; end if; end proc: for n from 0 to 300 do if isPr(n)+isPr(n+1)+isPr(n+2) = 1 then printf("%d,",n*(n+1)*(n+2)/6 ) ; end if; end do: # R. J. Mathar, May 01 2010

Extensions

Corrected (455, 14190, 17296 inserted, 16560 removed etc.) by R. J. Mathar, May 01 2010
Name and Example section clarified by Jon E. Schoenfield, Aug 06 2017

A144523 Triangular numbers n*(n+1)/2 with n and n+1 composite, where number of prime factors in n > number of prime factors in n+1.

Original entry on oeis.org

36, 210, 300, 528, 1035, 1176, 1275, 1485, 1596, 2080, 2346, 2926, 3240, 3321, 3570, 4095, 4278, 5460, 5565, 6105, 6555, 6903, 7260, 8256, 8778, 9870, 10440, 11628, 11935, 12880, 13695, 14196, 15576, 16653, 17020, 17391, 17955, 20100, 20910, 21736, 22578, 23436, 24310, 25200, 25425
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 15 2008

Keywords

Comments

Subsequence of A144291 - R. J. Mathar, Jan 17 2009
Prime factors counted with multiplicity. - Harvey P. Dale, Aug 23 2020

Examples

			If n=8=2*2*2(number of prime factors = 3) and n+1=9=3*3(number of prime factors = 2), then 8*9/2=36=a(1). If n=20=2*2*5(number of prime factors = 3) and n+1=21=3*7(number of prime factors = 2), then 20*21/2=210=a(2). If n=24=2*2*2*3(number of prime factors = 4) and n+1=25=5*5(number of prime factors = 2), then 24*25/2=300=a(3), etc.
		

Crossrefs

Programs

  • Mathematica
    (Times@@#)/2&/@Select[Partition[Range[250],2,1],AllTrue[ #,CompositeQ] && PrimeOmega[#[[1]]]>PrimeOmega[#[[2]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2020 *)

Extensions

Corrected definition. 2926 inserted and extended. - R. J. Mathar, Jan 17 2009
Previous Showing 51-60 of 74 results. Next