cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 180 results. Next

A248216 a(n) = 6^n - 2^n.

Original entry on oeis.org

0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Sequences of the form k^n - 2^n: A001047 (k=3), A020522 (k=4), A005057 (k=5), this sequence (k=6), A190540 (k=7), A248217 (k=8), A191465 (k=9), A060458 (k=10), A139740 (k=11).

Programs

  • Magma
    [6^n-2^n: n in [0..25]];
    
  • Mathematica
    Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x]
    LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
  • Sage
    [2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021

Formula

G.f.: 4*x/((1-2*x)*(1-6*x)).
a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 2^n*(3^n - 1) = A000079(n) * A024023(n).
E.g.f.: exp(6*x) - exp(2*x) = 2*exp(4*x)*sinh(2*x). - G. C. Greubel, Feb 09 2021
a(n) = 4*A016129(n-1). - R. J. Mathar, Mar 10 2022
a(n) = A000400(n) - A000079(n). - Bernard Schott, Mar 27 2022

A268472 T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with column sums equal.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 8, 36, 24, 1, 16, 216, 648, 120, 1, 32, 1296, 19584, 19800, 720, 1, 64, 7776, 643680, 4140000, 972000, 5040, 1, 128, 46656, 22374144, 1007460000, 1936704000, 69060600, 40320, 1, 256, 279936, 807480576, 269568000000
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2016

Keywords

Comments

Table starts
......1..........1.............1.............1............1..............1
......2..........4.............8............16...........32.............64
......6.........36...........216..........1296.........7776..........46656
.....24........648.........19584........643680.....22374144......807480576
....120......19800.......4140000....1007460000.269568000000.76711698000000
....720.....972000....1936704000.4757348160000
...5040...69060600.1610574336000
..40320.6756825600
.362880

Examples

			Some solutions for n=3 k=4
..2..2..2..2. .1..2..0..1. .0..1..2..2. .0..1..1..2. .0..2..1..0
..1..0..1..0. .0..0..2..2. .1..0..1..1. .1..2..2..1. .2..0..2..1
..0..1..0..1. .2..1..1..0. .2..2..0..0. .2..0..0..0. .1..1..0..2
		

Crossrefs

Diagonal is A268362.
Column 1 is A000142.
Row 2 is A000079.
Row 3 is A000400.

A373282 Expansion of Sum_{k>=0} x^(6^k) / (1 - 6*x^(6^k)).

Original entry on oeis.org

1, 6, 36, 216, 1296, 7777, 46656, 279936, 1679616, 10077696, 60466176, 362797062, 2176782336, 13060694016, 78364164096, 470184984576, 2821109907456, 16926659444772, 101559956668416, 609359740010496, 3656158440062976, 21936950640377856
Offset: 1

Views

Author

Seiichi Manyama, May 30 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - 6*x) + A(x^6).
If n == 0 (mod 6), a(n) = 6^n + a(n/6) otherwise a(n) = 6^n.

A009986 Powers of 42.

Original entry on oeis.org

1, 42, 1764, 74088, 3111696, 130691232, 5489031744, 230539333248, 9682651996416, 406671383849472, 17080198121677824, 717368321110468608, 30129469486639681536, 1265437718438866624512, 53148384174432398229504, 2232232135326160725639168, 93753749683698750476845056
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 42), L(1, 42), P(1, 42), T(1, 42). Essentially same as Pisot sequences E(42, 1764), L(42, 1764), P(42, 1764), T(42, 1764). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 42-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-42*x). - Philippe Deléham, Nov 24 2008
a(n) = 42^n; a(n) = 42*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(42*x).
a(n) = A000079(n)*A009965(n) = A000400(n)*A000420(n). (End)

A038478 Sums of 2 distinct powers of 6.

Original entry on oeis.org

7, 37, 42, 217, 222, 252, 1297, 1302, 1332, 1512, 7777, 7782, 7812, 7992, 9072, 46657, 46662, 46692, 46872, 47952, 54432, 279937, 279942, 279972, 280152, 281232, 287712, 326592, 1679617, 1679622, 1679652, 1679832, 1680912, 1687392, 1726272, 1959552, 10077697, 10077702
Offset: 1

Views

Author

Keywords

Crossrefs

Base-6 interpretation of A038444.

Programs

  • Mathematica
    Total/@Subsets[6^Range[0,10],{2}]//Union (* Harvey P. Dale, Aug 11 2018 *)
  • Python
    from math import isqrt
    def A038478(n): return 6**(m:=isqrt(n<<3)+1>>1)+6**(n-1-(m*(m-1)>>1)) # Chai Wah Wu, Apr 04 2025

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A069031 Powers of 6 with strictly increasing sum of digits.

Original entry on oeis.org

1, 6, 36, 1296, 7776, 279936, 362797056, 78364164096, 470184984576, 16926659444736, 21936950640377856, 4738381338321616896, 170581728179578208256, 36845653286788892983296, 2227915756473955677973140996096, 13367494538843734067838845976576
Offset: 1

Views

Author

Amarnath Murthy, Apr 02 2002

Keywords

Crossrefs

Subsequence of A000400.

Programs

  • Mathematica
    DeleteDuplicates[Table[{6^n,Total[IntegerDigits[6^n]]},{n,0,40}],GreaterEqual[ #1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, Jan 12 2023 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 26 2002
More terms from Sean A. Irvine, Mar 29 2024

A089507 Second column of triangle A089504 and second column of array A078741 divided by 18.

Original entry on oeis.org

1, 30, 756, 18360, 441936, 10614240, 254788416, 6115201920, 146766525696, 3522406694400, 84537821131776, 2028908069959680, 48693795855814656, 1168651113600245760, 28047626804770062336, 673143043784666480640
Offset: 0

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

Convolution of A000400 (powers of 6) with A009968 (powers of 24).

Crossrefs

Programs

  • Magma
    [6^n*(4^(n+1)-1)/3: n in [0..15]]; // Vincenzo Librandi, Oct 18 2017
  • Mathematica
    CoefficientList[Series[1/((1-6x)(1-24x)),{x,0,20}],x] (* or *) LinearRecurrence[{30,-144},{1,30},20] (* Harvey P. Dale, Sep 25 2017 *)

Formula

G.f.: 1/((1-3*2*1*x)*(1-4*3*2*x)).
a(n) = A089504(n+2, 2), n>=0.
a(n) = (4*(4*3*2)^n - (3*2*1)^n)/3 = (2^n)*(2^(2*(n+1))-1)*3^(n-1).
a(n) = 6^n*(4^(n+1)-1)/3. - Vincenzo Librandi, Oct 18 2017

A100851 Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Examples

			From _Stefano Spezia_, Apr 28 2024: (Start)
Triangle begins:
   1;
   2,  6;
   4, 12,  36;
   8, 24,  72, 216;
  16, 48, 144, 432, 1296;
  32, 96, 288, 864, 2592, 7776;
  ...
(End)
		

Crossrefs

Programs

Formula

T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
T(n,n) = A000400(n) = A100852(n,n).
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
Sum_{n>=0, k=0..n} 1/T(n,k) = 12/5. - Amiram Eldar, May 12 2025

A139626 a(n) = binomial(n+4, 4)*6^n.

Original entry on oeis.org

1, 30, 540, 7560, 90720, 979776, 9797760, 92378880, 831409920, 7205552640, 60526642176, 495217981440, 3961743851520, 31084451758080, 239794342133760, 1822437000216576, 13668277501624320, 101306056776744960, 742911083029463040, 5395880497792942080
Offset: 0

Views

Author

Zerinvary Lajos, Jun 12 2008

Keywords

Comments

With a different offset, number of n-permutations (n=5) of 7 objects t, u, v, w, z, x, y with repetition allowed, containing exactly four (4) u's. Example: a(1)=30 because we have
uuuut, uuutu, uutuu, utuuu, tuuuu,
uuuuv, uuuvu, uuvuu, uvuuu, vuuuu,
uuuuw, uuuwu, uuwuu, uwuuu, wuuuu,
uuuuz, uuuzu, uuzuu, uzuuu, zuuuu,
uuuux, uuuxu, uuxuu, uxuuu, xuuuu,
uuuuy, uuuyu, uuyuu, uyuuu, yuuuu.

Crossrefs

Programs

Formula

a(n) = A000332(n+4) * A000400(n). - Michel Marcus, Sep 11 2013
G.f.: 1 / (1-6*x)^5. - Colin Barker, Sep 25 2013
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 548 - 3000*log(6/5).
Sum_{n>=0} (-1)^n/a(n) = 8232*log(7/6) - 1268. (End)

Extensions

More terms from Colin Barker, Sep 25 2013

A164532 a(n) = 6*a(n-2) for n > 2; a(1) = 1, a(2) = 4.

Original entry on oeis.org

1, 4, 6, 24, 36, 144, 216, 864, 1296, 5184, 7776, 31104, 46656, 186624, 279936, 1119744, 1679616, 6718464, 10077696, 40310784, 60466176, 241864704, 362797056, 1451188224, 2176782336, 8707129344, 13060694016, 52242776064, 78364164096
Offset: 1

Views

Author

Klaus Brockhaus, Aug 15 2009

Keywords

Comments

Interleaving of A000400 and A067411 without initial term 1.
Binomial transform is apparently A123011. Fourth binomial transform is A154235.

Crossrefs

Cf. A000400 (powers of 6), A067411, A123011, A154235.

Programs

  • Magma
    [ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..29] ];
    
  • Mathematica
    LinearRecurrence[{0,6}, {1,4}, 40] (* G. C. Greubel, Jul 16 2021 *)
  • Sage
    [((1 - (-1)^n)*sqrt(6)/2 + 2*(1 + (-1)^n))*6^(n/2 -1) for n in (1..40)] # G. C. Greubel, Jul 16 2021

Formula

a(n) = (5 - (-1)^n)*6^(1/4*(2*n - 5 + (-1)^n)).
G.f.: x*(1+4*x)/(1-6*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = ((1-(-1)^n)*sqrt(6)/2 + 2*(1+(-1)^n))*6^(n/2 -1). - G. C. Greubel, Jul 16 2021
Previous Showing 101-110 of 180 results. Next