cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A051621 a(n) = (4*n+9)(!^4)/9(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).

Original entry on oeis.org

1, 13, 221, 4641, 116025, 3364725, 111035925, 4108329225, 168441498225, 7579867420125, 371413503586125, 19684915690064625, 1122040194333683625, 68444451854354701125, 4448889370533055573125, 306973366566780834545625
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617-A051622 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(13/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(13/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(13/4))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((4*n+9)(!^4))/9(!^4) = A007696(n+3)/(5*9).
E.g.f.: 1/(1-4*x)^(13/4).

A295182 a(n) = n! * [x^n] exp(-n*x)/(1 - x)^n.

Original entry on oeis.org

1, 0, 2, 6, 72, 620, 8640, 122346, 2156672, 41367672, 905126400, 21646532270, 570077595648, 16268377195044, 502096929431552, 16629319748711250, 588938142209310720, 22196966267762213744, 887352465220427317248, 37496112562144553167062, 1670071417348195942400000, 78195398849926292810318940
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

The n-th term of the n-fold exponential convolution of A000166 with themselves.

Crossrefs

Programs

  • Maple
    S:= series((exp(-x)/(1-x))^n,x,30):
    seq(n!*coeff(S,x,n),n=0..29); # Robert Israel, Nov 16 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[-n x]/(1 - x)^n, {x, 0, n}], {n, 0, 21}]

Formula

a(n) = A295181(n,n).
a(n) ~ phi^(3*n - 1/2) * n^n / (5^(1/4) * exp(n*(1 + 1/phi))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 16 2017
a(n) = n! * Sum_{k=0..n} (-n)^(n-k) * binomial(n+k-1,k)/(n-k)!. - Seiichi Manyama, Apr 25 2025

A370915 A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 06 2024

Keywords

Comments

The sequence of square arrays A(m, n, k) starts: A094587 (m = 1), A370419 (m = 2), A371077(m = 3), this array (m = 4).

Examples

			The array starts:
[0] 1,    1,     1,     1,      1,      1,      1,      1,      1, ...
[1] 0,    1,     2,     3,      4,      5,      6,      7,      8, ...
[2] 0,    5,    12,    21,     32,     45,     60,     77,     96, ...
[3] 0,   45,   120,   231,    384,    585,    840,   1155,   1536, ...
[4] 0,  585,  1680,  3465,   6144,   9945,  15120,  21945,  30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,      1;
[2] 0,      1,     1;
[3] 0,      5,     2,    1;
[4] 0,     45,    12,    3,   1;
[5] 0,    585,   120,   21,   4,  1;
[6] 0,   9945,  1680,  231,  32,  5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
		

Crossrefs

Similar square arrays: A094587, A370419, A371077.
Cf. A370913 (row sums of triangle), A371026.

Programs

  • Maple
    A := (n, k) -> 4^n*pochhammer(k/4, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..5);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
    U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 4**n * rising_factorial(k/4, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

A(n, k) = 4^n*Product_{j=0..n-1} (j + k/4).
A(n, k) = 4^n*Gamma(k/4 + n) / Gamma(k/4) for k >= 1.
The exponential generating function for column k is (1 - 4*x)^(-k/4). But much more is true: (1 - m*x)^(-k/m) are the exponential generating functions for the columns of the arrays A(m, n, k) = m^n*Pochhammer(k/m, n).
The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-4)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
In A370419 Werner Schulte pointed out how A371025 is related to the LU decomposition of A370419. Here the same procedure can be used and amounts to A = A371026 * transpose(binomial triangle), where '*' denotes matrix multiplication. See the Maple section for an implementation.

A001762 Number of labeled n-vertex dissections of a ball.

Original entry on oeis.org

1, 1, 10, 180, 4620, 152880, 6168960, 293025600, 15990004800, 984647664000, 67493121696000, 5094263446272000, 419688934689024000, 37465564582397952000, 3601861863990534144000, 370962724717928318976000, 40744403224500159055872000
Offset: 3

Views

Author

Keywords

Comments

This is the number of labeled Apollonian networks (planar 3-trees). - Allan Bickle, Feb 20 2024

Examples

			There is one maximal planar graph with 4 vertices, and one way to label it, so a(4) = 1.
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    using Combinatorics
    a(n) = n < 4 ? 1 : binomial(BigInt(n),3)*factorial(BigInt(3*n-9))÷factorial(BigInt(2*n-4))
    print([a(n) for n in 3:28]) # Paul Muljadi, Mar 27 2024
  • Mathematica
    Join[{1}, Table[Binomial[n, 3]*(3*n - 9)!/(2*n - 4)!, {n, 4, 25}]] (* T. D. Noe, Aug 10 2012 *)
  • Python
    from math import factorial
    from sympy import binomial
    def a(n):
        if n < 4:
            return 1
        else:
            return binomial(n, 3) * factorial(3*n-9) // factorial(2*n-4)
    print([a(n) for n in range(3, 21)]) # Paul Muljadi, Mar 05 2024
    

Formula

a(n) = binomial(n,3)*(3*n-9)!/(2*n-4)!, n >= 4; a(3) = 1.
a(n) ~ 3^(3*n - 19/2) * n^(n-2) / (2^(2*n - 5/2) * exp(n)). - Vaclav Kotesovec, Mar 14 2024

Extensions

More terms from Wolfdieter Lang
Name clarified by Andrey Zabolotskiy, Mar 15 2024

A079340 Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling outward, ending in a corner.

Original entry on oeis.org

1, 5, 72, 1380, 31920, 861840, 26611200, 925404480, 35805369600, 1526139014400, 71066912716800, 3590219977344000, 195589552648089600, 11430978821982720000, 713448513897799680000, 47363888351558338560000
Offset: 1

Views

Author

Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 03 2003

Keywords

Comments

If n == 0 or 1 (mod 4), the sign of the determinant will be independent of the orientation of the spiral. For n == 2 or 3 (mod 4), the sign will be reversed when the orientation is rotated by 1/4 or flipped on the horizontal or vertical axis. - Franklin T. Adams-Watters, Dec 31 2013
This distribution of the integers is sometimes known as Ulam's spiral, although that is sometimes reserved for when the primes are marked out in some way. - Franklin T. Adams-Watters, Dec 31 2013

Examples

			n=2, det=-5: {1 2 / 4 3 }.
n=3, det=72: {7 8 9 / 6 1 2 / 5 4 3 }.
n=4, det=-1380: { 7 8 9 10 / 6 1 2 11 /5 4 3 12 / 16 15 14 13 }.
n=5, det=31920: { 21 22 23 24 25 / 20 7 8 9 10 / 19 6 1 2 11 /18 5 4 3 12 / 17 16 15 14 13 }
		

Crossrefs

Programs

  • Mathematica
    M[0, 0] = 1;
    M[i_, j_] := If[i <= j,
      If[i + j >= 0, If[i != j, M[i + 1, j] + 1, M[i, j - 1] + 1],
       M[i, j + 1] + 1],
      If[i + j > 1, M[i, j - 1] + 1, M[i - 1, j] + 1]
      ]
    M[n_] := If[EvenQ[n],
      Table[M[i, j], {j, n/2, -n/2 + 1, -1}, {i, -n/2 + 1, n/2}],
      Table[M[i, j], {j, (n - 1)/2, -(n - 1)/2, -1}, {i, -(n - 1)/2, (n - 1)/2}]]
    a[n_]:=Det[M[n]] (* Christian Krattenthaler, Apr 19 2017 *)
  • Maxima
    A079340(n):=if n=1 then 1 else (2*n^2-3*n+3)*(2*n-2)!/(2*(n-1)!)$
    makelist(A079340(n),n,1,30); /* Martin Ettl, Nov 05 2012 */

Formula

a(n) = (2*n^2-3*n+3) (2n-2)!/(2 (n-1)!) = A096376(n-1)*A000407(n-2), n>1. - Conjectured by Dean Hickerson, Jan 30 2003. Proved in the article by Bhatnagar and Krattenthaler.
D-finite with recurrence (2*n^2-7*n+8)*a(n) -2*(2*n-3)*(2*n^2-3*n+3)*a(n-1)=0. - R. J. Mathar, May 03 2019

Extensions

Extended by Robert G. Wilson v, Jan 25 2003

A105725 Triangle read by rows: T(n,k)=(n+k)!/k! (0<=k<=n-1; n>=1).

Original entry on oeis.org

1, 2, 6, 6, 24, 60, 24, 120, 360, 840, 120, 720, 2520, 6720, 15120, 720, 5040, 20160, 60480, 151200, 332640, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200
Offset: 1

Views

Author

Amarnath Murthy, Apr 18 2005

Keywords

Comments

T(n,n-1)=(2n-1)!/(n-1)! (A000407); T(n,0)=n! (A000142); Row sums yield A092956; Arithmetic means of the rows yield A001761.
Has many diagonals in common with A068424. - Zerinvary Lajos, Apr 14 2006

Examples

			1
2 6
6 24 60
24 120 360 840
120 720 2520 6720 15120
720 5040 20160 60480 151200 332640
5040 40320 181440 604800 1663200 3991680 8648640
40320 362880 1814400 6652800 19958400 51891840 121080960 259459200
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k
    				

Formula

T(n, k)=(n+k)!/k! (0<=k<=n-1; n>=1).

Extensions

More terms from Emeric Deutsch, Apr 18 2005

A384024 a(n) = [x^n] Product_{k=0..n} (1 + (n+k)*x).

Original entry on oeis.org

1, 3, 26, 342, 5944, 127860, 3272688, 97053936, 3270729600, 123418922400, 5154170774400, 235977273544320, 11752173128586240, 632474276804697600, 36576553723886131200, 2261980049125982976000, 148956705206745595084800, 10406288081667512679321600, 768701832940487804295168000
Offset: 0

Views

Author

Vaclav Kotesovec, May 17 2025

Keywords

Crossrefs

Central terms of triangle A165675.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1 + (n+k)*x, {k, 0, n}], {x, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (k+1)*n^k*abs(stirling(n+1, k+1, 1))); \\ Seiichi Manyama, May 18 2025

Formula

a(n) ~ n! * log(2) * 4^n * sqrt(n/Pi).
a(n) ~ log(2) * 2^(2*n + 1/2) * n^(n+1) / exp(n).
From Seiichi Manyama, May 18 2025: (Start)
a(n) = A165675(2*n,n).
a(n) = Sum_{k=0..n} (k+1) * n^k * |Stirling1(n+1,k+1)|.
a(n) = (n+1)! * Sum_{k=0..n} (-1)^k * binomial(-n,k)/(n+1-k).
a(n) = (2*n)!/n! * (1 + n * Sum_{k=1..n} 1/(n+k)). (End)

A086984 Number of arrangements of n labeled balls in n labeled columns where only 1 column may have more than 1 ball.

Original entry on oeis.org

1, 6, 60, 696, 9120, 134640, 2227680, 41005440, 833172480, 18546796800, 449223667200, 11766674304000, 331501679308800, 9997170543360000, 321355745238528000, 10969253822951424000, 396269940892041216000
Offset: 1

Views

Author

Jon Perry, Jul 27 2003

Keywords

Comments

The difference between A000407 and A086984 is for example consider a(5). A000407 allows the 221 and 23 partitions, A086984 does not.

Examples

			a(2)=6;
.. .. -G -R R- G-
RG GR -R -G G- R-
		

Crossrefs

Programs

  • Mathematica
    Table[n!+Sum[Binomial[n-1,n-k],{k,2,n}]n n!,{n,20}] (* Harvey P. Dale, Nov 29 2019 *)
  • PARI
    a(n)=n!+sum(i=2,n,binomial(n-1,n-i)*n*n!)

Formula

a(n) = n! + Sum_{i=2..n} binomial(n-1, n-i)*n*n!.

A091544 First column sequence of array A091746 ((6,2)-Stirling2).

Original entry on oeis.org

1, 30, 2700, 491400, 150368400, 69470200800, 45155630520000, 39285398552400000, 44078217175792800000, 61973973349164676800000, 106719182107261573449600000, 220908706962031457040672000000, 541226332056977069749646400000000, 1548989762347068373623487996800000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also fifth column (m=4) sequence of triangle A091543.

Crossrefs

Cf. A091535 (third column of A091543, first column of array A091534), A000407, A007696, A091746.

Programs

  • Mathematica
    a[n_] := 2^(4*n-1) * Pochhammer[1/4, n] * Pochhammer[1/2, n]; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = 2^(n-1)*Product_{j=0..n-1}((2*j+1)*(4*j+1)), n>=1. From eq.12 of the Blasiak et al. reference with r=6, s=2, k=1.
a(n) = (2^(4*n-1))*risefac(1/4, n)*risefac(1/2, n), n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac4(4*n-3)*fac4(4*n-2)/2, n>=1, with fac4(4*n-3) = A007696(n) and fac4(4*n-2)/2 = A000407(n+1) (quartic- or 4-factorials).
E.g.f.: (hypergeom([1/4, 1/2], [], 16*x)-1)/2.
a(n) = A091746(n, 2), n>=1.
a(n) ~ sqrt(Pi) * 2^(4*n) * n^(2*n-1/4) / (Gamma(1/4) * exp(2*n)). - Amiram Eldar, Aug 30 2025

A100622 Expansion of e.g.f. exp( (1+2*x-sqrt(1-4*x))/4).

Original entry on oeis.org

1, 1, 2, 10, 94, 1286, 22876, 499612, 12925340, 386356924, 13099953016, 496719289496, 20825694943912, 956599393819720, 47772070664027984, 2577034852683364816, 149335440671982405136, 9251650217381166689552, 610194993478502245703200, 42688019374465782644235424
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Comments

Number of topologically distinct solutions to the clone ordering problem for n clones.

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 94*x^4 + 1286*x^5 + 22876*x^6 + 499612*x^7 + ...
		

Crossrefs

E.g.f. (1+2*x-sqrt(1-4*x))/4 gives A000407.
Cf. A088218.

Programs

  • Maple
    a := proc(n) option remember: if n = 0 then factorial(0) elif n = 1 then factorial(1) elif n = 2 then factorial(2) elif  n >= 3 then (4*n-5)*procname(n-1) - (4*n-7)*procname(n-2) + (n-2)*procname(n-3) fi; end:
    seq(a(n), n = 0..250); # Muniru A Asiru, Jan 23 2018
  • Mathematica
    CoefficientList[Series[Exp[(1+2*x-Sqrt[1-4*x])/4], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( (1 + 2*x - sqrt(1 - 4*x + x * O(x^n))) / 4), n))}; /* Michael Somos, Jan 03 2015 */

Formula

a(n) = n! for n = 0, 1, 2. a(n) = (4n-5) * a(n-1) - (4n-7) * a(n-2) + (n-2) * a(n-3) for n > 2. - Lee A. Newberg, Oct 18 2006
a(n) ~ n^(n-1)*exp(3/8-n)*2^(2*n-5/2). - Vaclav Kotesovec, Jun 26 2013
Given e.g.f. A(x), then A'(x) / A(x) = g.f. for A088218. - Michael Somos, Jan 03 2015
E.g.f.: exp( (1 + 2*x - sqrt(1 - 4*x)) / 4). - Michael Somos, Jan 03 2015
0 = a(n)*(+a(n+1) - 5*a(n+2) + 7*a(n+3) - a(n+4)) + a(n+1)*(-3*a(n+1) + 17*a(n+2) - 23*a(n+3) + 4*a(n+4)) + a(n+2)*(-8*a(n+2) + 12*a(n+3) - 4*a(n+4)) + a(n+3)*(+4*a(n+3)) for all n>-2. - Michael Somos, Jan 03 2015
Previous Showing 31-40 of 57 results. Next