A051621
a(n) = (4*n+9)(!^4)/9(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 13, 221, 4641, 116025, 3364725, 111035925, 4108329225, 168441498225, 7579867420125, 371413503586125, 19684915690064625, 1122040194333683625, 68444451854354701125, 4448889370533055573125, 306973366566780834545625
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(13/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(13/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(13/4))) \\ G. C. Greubel, Aug 15 2018
A295182
a(n) = n! * [x^n] exp(-n*x)/(1 - x)^n.
Original entry on oeis.org
1, 0, 2, 6, 72, 620, 8640, 122346, 2156672, 41367672, 905126400, 21646532270, 570077595648, 16268377195044, 502096929431552, 16629319748711250, 588938142209310720, 22196966267762213744, 887352465220427317248, 37496112562144553167062, 1670071417348195942400000, 78195398849926292810318940
Offset: 0
-
S:= series((exp(-x)/(1-x))^n,x,30):
seq(n!*coeff(S,x,n),n=0..29); # Robert Israel, Nov 16 2017
-
Table[n! SeriesCoefficient[Exp[-n x]/(1 - x)^n, {x, 0, n}], {n, 0, 21}]
A370915
A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 5, 12, 21, 32, 45, 60, 77, 96, ...
[3] 0, 45, 120, 231, 384, 585, 840, 1155, 1536, ...
[4] 0, 585, 1680, 3465, 6144, 9945, 15120, 21945, 30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 5, 2, 1;
[4] 0, 45, 12, 3, 1;
[5] 0, 585, 120, 21, 4, 1;
[6] 0, 9945, 1680, 231, 32, 5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
Columns:
A000007,
A007696,
A001813,
A008545,
A047053,
A007696,
A000407,
A034176,
A052570 and
A034177,
A051617,
A051618,
A051619,
A051620.
-
A := (n, k) -> 4^n*pochhammer(k/4, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..5);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
MatrixMatrixMultiply(L, Transpose(U));
-
A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
-
def A(n, k): return 4**n * rising_factorial(k/4, n)
for n in range(6): print([A(n, k) for k in range(9)])
A001762
Number of labeled n-vertex dissections of a ball.
Original entry on oeis.org
1, 1, 10, 180, 4620, 152880, 6168960, 293025600, 15990004800, 984647664000, 67493121696000, 5094263446272000, 419688934689024000, 37465564582397952000, 3601861863990534144000, 370962724717928318976000, 40744403224500159055872000
Offset: 3
There is one maximal planar graph with 4 vertices, and one way to label it, so a(4) = 1.
- L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
using Combinatorics
a(n) = n < 4 ? 1 : binomial(BigInt(n),3)*factorial(BigInt(3*n-9))÷factorial(BigInt(2*n-4))
print([a(n) for n in 3:28]) # Paul Muljadi, Mar 27 2024
-
Join[{1}, Table[Binomial[n, 3]*(3*n - 9)!/(2*n - 4)!, {n, 4, 25}]] (* T. D. Noe, Aug 10 2012 *)
-
from math import factorial
from sympy import binomial
def a(n):
if n < 4:
return 1
else:
return binomial(n, 3) * factorial(3*n-9) // factorial(2*n-4)
print([a(n) for n in range(3, 21)]) # Paul Muljadi, Mar 05 2024
A079340
Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling outward, ending in a corner.
Original entry on oeis.org
1, 5, 72, 1380, 31920, 861840, 26611200, 925404480, 35805369600, 1526139014400, 71066912716800, 3590219977344000, 195589552648089600, 11430978821982720000, 713448513897799680000, 47363888351558338560000
Offset: 1
Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 03 2003
n=2, det=-5: {1 2 / 4 3 }.
n=3, det=72: {7 8 9 / 6 1 2 / 5 4 3 }.
n=4, det=-1380: { 7 8 9 10 / 6 1 2 11 /5 4 3 12 / 16 15 14 13 }.
n=5, det=31920: { 21 22 23 24 25 / 20 7 8 9 10 / 19 6 1 2 11 /18 5 4 3 12 / 17 16 15 14 13 }
- Gaurav Bhatnagar, Christian Krattenthaler, Spiral determinants, arXiv:1704.02859 [math.CO], 2017.
-
M[0, 0] = 1;
M[i_, j_] := If[i <= j,
If[i + j >= 0, If[i != j, M[i + 1, j] + 1, M[i, j - 1] + 1],
M[i, j + 1] + 1],
If[i + j > 1, M[i, j - 1] + 1, M[i - 1, j] + 1]
]
M[n_] := If[EvenQ[n],
Table[M[i, j], {j, n/2, -n/2 + 1, -1}, {i, -n/2 + 1, n/2}],
Table[M[i, j], {j, (n - 1)/2, -(n - 1)/2, -1}, {i, -(n - 1)/2, (n - 1)/2}]]
a[n_]:=Det[M[n]] (* Christian Krattenthaler, Apr 19 2017 *)
-
A079340(n):=if n=1 then 1 else (2*n^2-3*n+3)*(2*n-2)!/(2*(n-1)!)$
makelist(A079340(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
A105725
Triangle read by rows: T(n,k)=(n+k)!/k! (0<=k<=n-1; n>=1).
Original entry on oeis.org
1, 2, 6, 6, 24, 60, 24, 120, 360, 840, 120, 720, 2520, 6720, 15120, 720, 5040, 20160, 60480, 151200, 332640, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200
Offset: 1
1
2 6
6 24 60
24 120 360 840
120 720 2520 6720 15120
720 5040 20160 60480 151200 332640
5040 40320 181440 604800 1663200 3991680 8648640
40320 362880 1814400 6652800 19958400 51891840 121080960 259459200
A384024
a(n) = [x^n] Product_{k=0..n} (1 + (n+k)*x).
Original entry on oeis.org
1, 3, 26, 342, 5944, 127860, 3272688, 97053936, 3270729600, 123418922400, 5154170774400, 235977273544320, 11752173128586240, 632474276804697600, 36576553723886131200, 2261980049125982976000, 148956705206745595084800, 10406288081667512679321600, 768701832940487804295168000
Offset: 0
-
Table[SeriesCoefficient[Product[1 + (n+k)*x, {k, 0, n}], {x, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, (k+1)*n^k*abs(stirling(n+1, k+1, 1))); \\ Seiichi Manyama, May 18 2025
A086984
Number of arrangements of n labeled balls in n labeled columns where only 1 column may have more than 1 ball.
Original entry on oeis.org
1, 6, 60, 696, 9120, 134640, 2227680, 41005440, 833172480, 18546796800, 449223667200, 11766674304000, 331501679308800, 9997170543360000, 321355745238528000, 10969253822951424000, 396269940892041216000
Offset: 1
a(2)=6;
.. .. -G -R R- G-
RG GR -R -G G- R-
-
Table[n!+Sum[Binomial[n-1,n-k],{k,2,n}]n n!,{n,20}] (* Harvey P. Dale, Nov 29 2019 *)
-
a(n)=n!+sum(i=2,n,binomial(n-1,n-i)*n*n!)
A091544
First column sequence of array A091746 ((6,2)-Stirling2).
Original entry on oeis.org
1, 30, 2700, 491400, 150368400, 69470200800, 45155630520000, 39285398552400000, 44078217175792800000, 61973973349164676800000, 106719182107261573449600000, 220908706962031457040672000000, 541226332056977069749646400000000, 1548989762347068373623487996800000000
Offset: 1
-
a[n_] := 2^(4*n-1) * Pochhammer[1/4, n] * Pochhammer[1/2, n]; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)
A100622
Expansion of e.g.f. exp( (1+2*x-sqrt(1-4*x))/4).
Original entry on oeis.org
1, 1, 2, 10, 94, 1286, 22876, 499612, 12925340, 386356924, 13099953016, 496719289496, 20825694943912, 956599393819720, 47772070664027984, 2577034852683364816, 149335440671982405136, 9251650217381166689552, 610194993478502245703200, 42688019374465782644235424
Offset: 0
G.f. = 1 + x + 2*x^2 + 10*x^3 + 94*x^4 + 1286*x^5 + 22876*x^6 + 499612*x^7 + ...
- Lee A. Newberg, Table of n, a(n) for n = 0..100
- Lee Aaron Newberg, Finding, Evaluating and Counting DNA Physical Maps, Ph.D. Thesis, University of California, 1993, Berkeley, CA.
- Lee A. Newberg, The Number of Clone Orderings, Discrete Applied Mathematics, Vol. 69 (1996) pp. 233-245.
E.g.f. (1+2*x-sqrt(1-4*x))/4 gives
A000407.
-
a := proc(n) option remember: if n = 0 then factorial(0) elif n = 1 then factorial(1) elif n = 2 then factorial(2) elif n >= 3 then (4*n-5)*procname(n-1) - (4*n-7)*procname(n-2) + (n-2)*procname(n-3) fi; end:
seq(a(n), n = 0..250); # Muniru A Asiru, Jan 23 2018
-
CoefficientList[Series[Exp[(1+2*x-Sqrt[1-4*x])/4], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( (1 + 2*x - sqrt(1 - 4*x + x * O(x^n))) / 4), n))}; /* Michael Somos, Jan 03 2015 */
Comments