cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 123 results. Next

A323534 a(n) = Product_{k=1..n} (binomial(k-1,6) + binomial(n-k,6)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2551486386077798400, 4356795681519916813516800, 8378295212644383454317143654400, 17729411415388061815791372479702630400, 47314452412112353657024080317791118400000000, 160496342476959706163534573940481304027441961369600
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;  mul(binomial(k-1,6)+binomial(n-k,6),k=1..n) end proc:
    map(f, [$0..20]); # Robert Israel, Feb 01 2019
  • Mathematica
    Table[Product[Binomial[k-1,6] + Binomial[n-k,6], {k, 1, n}], {n, 0, 20}]
  • PARI
    a(n) = prod(k=1, n, binomial(k-1, 6) + binomial(n-k, 6)); \\ Daniel Suteu, Jan 17 2019

Formula

a(n) ~ exp(-6*n + (15 - 4*sqrt(3))*Pi*(n-6)/6) * n^(6*n) / (6!)^n.

A240440 Number of ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, 45045, 75075, 120120, 185640, 278460, 406980, 581400, 813960, 1119195, 1514205, 2018940, 2656500, 3453450, 4440150, 5651100, 7125300, 8906625, 11044215, 13592880, 16613520, 20173560, 24347400, 29216880
Offset: 1

Views

Author

Heinrich Ludwig, Apr 08 2014

Keywords

Comments

a(n) = 15 * A000579(n+3).
a(n) = A001498(n,3), the fourth column of coefficients of Bessel polynomials. - Ran Pan, Dec 03 2015

Crossrefs

If one of the initial zeros is omitted, this is a row of the array in A129533.

Programs

  • Magma
    [(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48 : n in [1..50]]; // Wesley Ivan Hurt, Dec 03 2015
    
  • Maple
    A240440:=n->(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48; seq(A240440(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
  • Mathematica
    Table[(n+3)(n+2)(n+1)n(n-1)(n-2)/48, {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *)
    CoefficientList[Series[15 x^2/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
  • PARI
    Vec(15*x^3/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 18 2014
    
  • PARI
    vector(100,n,(n^2-1)*(n^2-4)*(n+3)*n/48) \\ Derek Orr, Dec 24 2015

Formula

a(n) = (n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48.
G.f.: 15*x^3 / (1-x)^7. - Colin Barker, Apr 18 2014
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>7. - Wesley Ivan Hurt, Dec 03 2015

A185509 Fourth accumulation array, T, of the natural number array A000027, by antidiagonals.

Original entry on oeis.org

1, 6, 7, 22, 41, 28, 63, 146, 161, 84, 154, 406, 561, 476, 210, 336, 966, 1526, 1631, 1176, 462, 672, 2058, 3556, 4361, 3976, 2562, 924, 1254, 4032, 7434, 9996, 10486, 8568, 5082, 1716, 2211, 7392, 14322, 20580, 23716, 22344, 16842, 9372, 3003, 3718, 12837, 25872, 39102, 48216, 49980, 43512, 30822, 16302, 5005, 6006, 21307, 44352, 69762, 90552, 100548, 96432, 79002, 53262, 27027, 8008, 9373, 34034, 72787, 118272, 159852
Offset: 1

Views

Author

Clark Kimberling, Jan 29 2011

Keywords

Comments

See A144112 (and A185506) for the definition of rectangular sum array (aa).
Sequence is aa(aa(aa(aa(A000027)))).

Examples

			Northwest corner:
1.....6....22....63...154
7....41...146...406...966
28..161...561..1526..3556
84..476..1631..4361..9996
		

Crossrefs

Cf. A000579 (column 1), A257200 (row 1).

Programs

  • Mathematica
    u[n_,k_]:=k(k+1)(k+2)(k+3)n(n+1)(n+2)(n+3)(5n^2+(6k+39)n+5k^2+9k+86)/86400
    TableForm[Table[u[n,k],{n,1,10},{k,1,15}]]
    Table[u[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = F*(5*n^2 + (6*k + 39)*n + 5*k^2 + 9*k + 86), where
F = k*(k+1)*(k+2)*(k+3)*n*(n+1)*(n+2)*(n+3)/86400.

A278969 Number of 7-digit numbers whose sum of digits is n.

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5004, 7995, 12306, 18312, 26418, 37038, 50568, 67353, 87648, 111573, 139068, 169863, 203463, 239148, 275988, 312873, 348558, 381723, 411048, 435303, 453438, 464653, 468448, 464653, 453438, 435303, 411048, 381723, 348558, 312873, 275988, 239148, 203463, 169863, 139068, 111573, 87648, 67353, 50568, 37038, 26418, 18312, 12306, 7995, 5004, 3003, 1716, 924, 462, 210, 84, 28, 7, 1
Offset: 1

Views

Author

Daniel Mondot, Dec 02 2016

Keywords

Comments

There are 9000000 numbers with 7 decimal digits, the smallest being 1000000 and the largest 9999999.
Differs for n >= 10 (5004 vs 5005) from A000579(n+5) = binomial(n+5,6). - M. F. Hasler, Mar 05 2017

Examples

			a(2)=7: 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000.
		

Crossrefs

A071817 (3-digit numbers), A090579 (4-digit numbers), A090580 (5-digit numbers), A090581 (6-digit numbers), A278971 (8-digit numbers).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[(x - x^10)/(1 - x) ((1 - x^10)/(1 - x))^#, {x, 0, 9 (# + 1)}], x] &@ 6 (* or *)
    Function[w, Count[w, #] & /@ Range[Max@ w]]@ Map[Total@ IntegerDigits@ # &, Range[10^#, 10^(# + 1) - 1]] &@ 6 (* Michael De Vlieger, Dec 07 2016 *)
  • PARI
    b=vector(63, i, 0); for(n=1000000, 9999999, a=eval(Vec(Str(n))); b[sum(j=1, 7, a[j])]++); for(n=1, 63, print1(b[n], ", "))
    
  • PARI
    Vec((1-x^9)*(1-x^10)^6/(1-x)^7) \\ shorter than (1-x^9)/(1-x)*((1-x^10)/(1-x))^6, but not better. - M. F. Hasler, Mar 05 2017

Formula

G.f.: (x - x^10)/(1 - x)*((1 - x^10)/(1 - x))^6. - Michael De Vlieger, Dec 07 2016
a(64-n) = a(n), 1 <= n <= 63. - M. F. Hasler, Mar 05 2017

A297178 Triangle read by rows: T(n,k) = number of partitions of genus 2 of n elements with k parts (n >= 6, 2 <= k <= n-4).

Original entry on oeis.org

1, 7, 21, 28, 210, 161, 84, 1134, 2184, 777, 210, 4410, 15330, 13713, 2835, 462, 13860, 75075, 121275, 63063, 8547, 924, 37422, 289905, 729960, 685608, 233772, 22407, 1716, 90090, 942942, 3396393, 4972968, 3063060, 738738, 52767, 3003, 198198, 2690688, 13096083, 27432405, 26342316, 11477466, 2063061, 114114
Offset: 6

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Examples

			Triangle begins (see Table 3.2 in Yip's thesis):
    1;
    7,    21;
   28,   210,    161;
   84,  1134,   2184,    777;
  210,  4410,  15330,  13713,   2835;
  462, 13860,  75075, 121275,  63063,   8547;
  924, 37422, 289905, 729960, 685608, 233772, 22407;
  ...
		

Crossrefs

Row sums are A297179.
First column is A000579.

Programs

  • Mathematica
    T[n_,k_]:=((-6*(-2 + n)*(-1 + n) - k^2*(-13 + 5*n) + k*(-8 + n*(-9 + 5*n)))*(-4 + n)!*n!)/(1440*(-2 + k)!*k!*(-4 - k + n)!*(-k + n)!) (* Robert Coquereaux, Mar 05 2024 *)

Formula

T(n,k) = 8*gam(n-10,k-6) -4*gam(n-10,k-5) -15*gam(n-10,k-4) +10*gam(n-10,k-3) +gam(n-10,k-2) -4*gam(n-9,k-5) +39*gam(n-9,k-4) -10*gam(n-9,k-3) -4*gam(n-9,k-2) -15*gam(n-8,k-4) -10*gam(n-8,k-3) +6*gam(n-8,k-2) -4*gam(n-7,k-2) +10*gam(n-7,k-3) +gam(n-6,k-2) with gam(n,k) = (binomial(n+10,5) * binomial(n+5,k) * binomial(n+5,n-k)) / binomial(10,5) [Cori & Hetyei]. - Robert Coquereaux, Feb 12 2024
T(n,k) = ((-6*(-2 + n)*(-1 + n) - k^2*(-13 + 5*n) + k*(-8 + n*(-9 + 5*n)))*(-4 + n)!*n!) / (1440*(-2 + k)!*k!*(-4 - k + n)!*(-k + n)!). - Robert Coquereaux, Mar 05 2024

A017764 a(n) = binomial coefficient C(n,100).

Original entry on oeis.org

1, 101, 5151, 176851, 4598126, 96560646, 1705904746, 26075972546, 352025629371, 4263421511271, 46897636623981, 473239787751081, 4416904685676756, 38393094575497956, 312629484400483356, 2396826047070372396, 17376988841260199871, 119594570260437846171
Offset: 100

Views

Author

Keywords

Comments

More generally, the ordinary generating function for the binomial coefficients C(n,k) is x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Mar 21 2016

Crossrefs

Cf. similar sequences of the binomial coefficients C(n,k): A000012 (k = 0), A001477 (k = 1), A000217 (k = 2), A000292 (k = 3), A000332 (k = 4), A000389 (k = 5), A000579-A000582 (k = 6..9) A001287 (k = 10), A001288 (k = 11), A010965-A011001 (k = 12..48), A017713-A017763 (k = 49..99), this sequence (k = 100).

Programs

Formula

G.f.: x^100/(1 - x)^101. - Ilya Gutkovskiy, Mar 21 2016
E.g.f.: x^100 * exp(x)/(100)!. - G. C. Greubel, Nov 24 2017
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=100} 1/a(n) = 100/99.
Sum_{n>=100} (-1)^n/a(n) = A001787(100)*log(2) - A242091(100)/99! = 63382530011411470074835160268800*log(2) - 1914409165727592211172313915606932788039791776845041612575266508424929 / 43575234518570298227833630584570189723 = 0.9902877001... (End)

A053643 a(n) = ceiling(binomial(n,6)/n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 4, 10, 21, 42, 77, 132, 215, 334, 501, 728, 1032, 1428, 1938, 2584, 3392, 4389, 5609, 7084, 8855, 10964, 13455, 16380, 19793, 23751, 28319, 33563, 39556, 46376, 54106, 62832, 72650, 83657, 95960, 109668, 124900
Offset: 1

Views

Author

N. J. A. Sloane, Mar 25 2000

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(Binomial(n,6)/n) : n in [1..50]]; // Wesley Ivan Hurt, Nov 01 2015
    
  • Maple
    seq(ceil(binomial(n,5)/6), n=0..50); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Table[Ceiling[Binomial[n, 6]/n], {n, 50}] (* Michael De Vlieger, Nov 01 2015 *)
  • PARI
    vector(50, n, ceil(binomial(n, 6)/n)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [ceil(binomial(n,6)/n) for n in (1..50)] # G. C. Greubel, May 17 2019

Formula

From Robert Israel, Nov 01 2015: (Start)
a(n) = ceiling(A000389(n-1)/6).
G.f.: (x^52 -2*x^51 +4*x^50 -4*x^49 +2*x^48 +x^47 -x^46 +2*x^44 -2*x^43 +x^42 -x^41 +4*x^40 -5*x^39 +4*x^38 -2*x^37 +3*x^36 -5*x^35 +5*x^34 -2*x^33 -2*x^32 +5*x^31 -5*x^30 +2*x^29 +2*x^28 -5*x^27 +5*x^26 -2*x^25 -2*x^24 +5*x^23 -5*x^22 +2*x^21 +2*x^20 -5*x^19 +5*x^18 -3*x^17 +4*x^16 -7*x^15 +9*x^14 -7*x^13 +5*x^12 -4*x^11 +4*x^10 -2*x^9 +3*x^7 -4*x^6 +x^5 +6*x^4 -10*x^3 +9*x^2 -4*x +1)*x^6/((x -1)^6*(x +1)*(x^4 +1)*(x^2 +x +1)*(x^2 -x +1)*(x^6 +x^3 +1)*(x^6 -x^3 +1)*(x^8 -x^4 +1)*(x^24 -x^12 +1)).
(End)

A117411 Skew triangle associated to the Euler numbers.

Original entry on oeis.org

1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0

Views

Author

Paul Barry, Mar 13 2006

Keywords

Comments

Inverse is A117414. Row sums of the inverse are the Euler numbers A000364.
Triangle, read by rows, given by [0,-4,4,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2009

Examples

			Triangle begins
  1;
  0,  1;
  0, -4,   1;
  0,  0, -12,   1;
  0,  0,  16, -24,    1;
  0,  0,   0,  80,  -40,     1;
  0,  0,   0, -64,  240,   -60,      1;
  0,  0,   0,   0, -448,   560,    -84,      1;
  0,  0,   0,   0,  256, -1792,   1120,   -112,      1;
  0,  0,   0,   0,    0,  2304,  -5376,   2016,   -144,      1;
  0,  0,   0,   0,    0, -1024,  11520, -13440,   3360,   -180,    1;
  0,  0,   0,   0,    0,     0, -11264,  42240, -29568,   5280, -220,    1;
  0,  0,   0,   0,    0,     0,   4096, -67584, 126720, -59136, 7920, -264, 1;
		

Crossrefs

Programs

  • Magma
    A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
    [A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
  • SageMath
    def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
    flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022

Formula

Sum_{k=0..n} T(n, k) = A006495(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117413(n).
T(n, k) = (-4)^(n-k)*Sum_{j=0..n-k} C(n,k-j)*C(j,n-k).
G.f.: (1-x*y)/(1-2x*y+x^2*y(y+4)). - Paul Barry, Mar 14 2006
T(n, k) = (-4)^(n-k)*A098158(n,k). - Philippe Deléham, Nov 01 2009
T(n, k) = 2*T(n-1,k-1) - 4*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 31 2013
From G. C. Greubel, Sep 07 2022: (Start)
T(n, n) = 1.
T(n, n-1) = -4*A000217(n-1), n >= 1.
T(n, n-2) = (-4)^2 * A000332(n), n >= 2.
T(n, n-3) = (-4)^3 * A000579(n), n >= 3.
T(n, n-4) = (-4)^4 * A000581(n), n >= 4.
T(2*n, n) = A262710(n). (End)

A128629 A triangular array generated by moving Pascal sequences to prime positions and embedding new sequences at the nonprime locations. (cf. A007318 and A000040).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 9, 10, 5, 1, 1, 6, 10, 16, 15, 6, 1, 1, 5, 18, 20, 25, 21, 7, 1, 1, 8, 15, 40, 35, 36, 28, 8, 1, 1, 9, 27, 35, 75, 56, 49, 36, 9, 1
Offset: 1

Views

Author

Alford Arnold, Mar 29 2007

Keywords

Comments

The array can be constructed by beginning with A007318 (Pascal's triangle) placing each diagonal on a prime row. The other rows are filled in by mapping the prime factorization of the row number to the known sequences on the prime rows and multiplying term by term.

Examples

			Row six begins 1 6 18 40 75 126 ... because rows two and three are
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
The array begins
1 1 1 1 1 1 1 1 1 A000012
1 2 3 4 5 6 7 8 9 A000027
1 3 6 10 15 21 28 36 45 A000217
1 4 9 16 25 36 49 64 81 A000290
1 4 10 20 35 56 84 120 165 A000292
1 6 18 40 75 126 196 288 405 A002411
1 5 15 35 70 126 210 330 495 A000332
1 8 27 64 125 216 343 512 729 A000578
1 9 36 100 225 441 784 1296 2025 A000537
1 8 30 80 175 336 588 960 1485 A002417
1 6 21 56 126 252 462 792 1287 A000389
1 12 54 160 375 756 1372 2304 3645 A019582
1 7 28 84 210 462 924 1716 3003 A000579
1 10 45 140 350 756 1470 2640 4455 A027800
1 12 60 200 525 1176 2352 4320 7425 A004302
1 16 81 256 625 1296 2401 4096 6561 A000583
1 8 36 120 330 792 1716 3432 6435 A000580
1 18 108 400 1125 2646 5488 10368 18225 A019584
1 9 45 165 495 1287 3003 6435 12870 A000581
1 16 90 320 875 2016 4116 7680 13365 A119771
1 15 90 350 1050 2646 5880 11880 22275 A001297
1 12 63 224 630 1512 3234 6336 11583 A027810
1 10 55 220 715 2002 5005 11440 24310 A000582
1 24 162 640 1875 4536 9604 18432 32805 A019583
1 16 100 400 1225 3136 7056 14400 27225 A001249
1 14 84 336 1050 2772 6468 13728 27027 A027818
1 27 216 1000 3375 9261 21952 46656 91125 A059827
1 20 135 560 1750 4536 10290 21120 40095 A085284
		

Crossrefs

Cf. A064553 (second diagonal), A080688 (second diagonal resorted).

Programs

  • Maple
    A128629 := proc(n,m) if n = 1 then 1; elif isprime(n) then p := numtheory[pi](n) ; binomial(p+m-1,p) ; else a := 1 ; for p in ifactors(n)[2] do a := a* procname(op(1,p),m)^ op(2,p) ; od: fi; end: # R. J. Mathar, Sep 09 2009

Extensions

A-number added to each row of the examples by R. J. Mathar, Sep 09 2009

A175113 a(n) = ((2*n + 1)^6 + 1)/2.

Original entry on oeis.org

1, 365, 7813, 58825, 265721, 885781, 2413405, 5695313, 12068785, 23522941, 42883061, 74017945, 122070313, 193710245, 297411661, 443751841, 645733985, 919132813, 1282863205, 1759371881, 2375052121, 3160681525, 4151882813
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Convolution of the finite sequence 1, 358, 5279, 11764, 5279, 358, 1 with A000579. Partial sums of A175114.
Subsequence of A001844 because a(n)=(A050492(n+1)-1)^2+A050492(n+1)^2. - Bruno Berselli, Dec 28 2010
a(n) is also the first integer in a sum of (2*n + 1)^6 consecutive integers that equals (2*n + 1)^12. - Patrick J. McNab, Dec 26 2016

Programs

  • Magma
    I:=[1, 365, 7813, 58825, 265721, 885781, 2413405]; [n le 7 select I[n] else 7*Self(n-1) - 21*Self(n-2) + 35*Self(n-3) - 35*Self(n-4) + 21*Self(n-5) - 7*Self(n-6) + Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 20 2012
  • Mathematica
    CoefficientList[Series[(1 + 358*x + 5279*x^2 + 11764*x^3 + 5279*x^4 + 358*x^5 + x^6)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 20 2012 *)

Formula

a(n)= 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7).
G.f.: (1+358*x+5279*x^2+11764*x^3+5279*x^4+358*x^5+x^6)/(1-x)^7.
a(n) = (2*n^2+2*n+1)*(16*n^4+32*n^3+20*n^2+4*n+1). - Bruno Berselli, Dec 27 2010
Previous Showing 61-70 of 123 results. Next