A323534
a(n) = Product_{k=1..n} (binomial(k-1,6) + binomial(n-k,6)).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2551486386077798400, 4356795681519916813516800, 8378295212644383454317143654400, 17729411415388061815791372479702630400, 47314452412112353657024080317791118400000000, 160496342476959706163534573940481304027441961369600
Offset: 0
-
f:= proc(n) local k; mul(binomial(k-1,6)+binomial(n-k,6),k=1..n) end proc:
map(f, [$0..20]); # Robert Israel, Feb 01 2019
-
Table[Product[Binomial[k-1,6] + Binomial[n-k,6], {k, 1, n}], {n, 0, 20}]
-
a(n) = prod(k=1, n, binomial(k-1, 6) + binomial(n-k, 6)); \\ Daniel Suteu, Jan 17 2019
A240440
Number of ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.
Original entry on oeis.org
0, 0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, 45045, 75075, 120120, 185640, 278460, 406980, 581400, 813960, 1119195, 1514205, 2018940, 2656500, 3453450, 4440150, 5651100, 7125300, 8906625, 11044215, 13592880, 16613520, 20173560, 24347400, 29216880
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. (2010) Vol. 13, Issue 4, Art. No. 10.4.4. See p=5 in the last equation on page 3.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
If one of the initial zeros is omitted, this is a row of the array in
A129533.
-
[(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48 : n in [1..50]]; // Wesley Ivan Hurt, Dec 03 2015
-
A240440:=n->(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48; seq(A240440(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
-
Table[(n+3)(n+2)(n+1)n(n-1)(n-2)/48, {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *)
CoefficientList[Series[15 x^2/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
-
Vec(15*x^3/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 18 2014
-
vector(100,n,(n^2-1)*(n^2-4)*(n+3)*n/48) \\ Derek Orr, Dec 24 2015
A185509
Fourth accumulation array, T, of the natural number array A000027, by antidiagonals.
Original entry on oeis.org
1, 6, 7, 22, 41, 28, 63, 146, 161, 84, 154, 406, 561, 476, 210, 336, 966, 1526, 1631, 1176, 462, 672, 2058, 3556, 4361, 3976, 2562, 924, 1254, 4032, 7434, 9996, 10486, 8568, 5082, 1716, 2211, 7392, 14322, 20580, 23716, 22344, 16842, 9372, 3003, 3718, 12837, 25872, 39102, 48216, 49980, 43512, 30822, 16302, 5005, 6006, 21307, 44352, 69762, 90552, 100548, 96432, 79002, 53262, 27027, 8008, 9373, 34034, 72787, 118272, 159852
Offset: 1
Northwest corner:
1.....6....22....63...154
7....41...146...406...966
28..161...561..1526..3556
84..476..1631..4361..9996
-
u[n_,k_]:=k(k+1)(k+2)(k+3)n(n+1)(n+2)(n+3)(5n^2+(6k+39)n+5k^2+9k+86)/86400
TableForm[Table[u[n,k],{n,1,10},{k,1,15}]]
Table[u[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
A278969
Number of 7-digit numbers whose sum of digits is n.
Original entry on oeis.org
1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5004, 7995, 12306, 18312, 26418, 37038, 50568, 67353, 87648, 111573, 139068, 169863, 203463, 239148, 275988, 312873, 348558, 381723, 411048, 435303, 453438, 464653, 468448, 464653, 453438, 435303, 411048, 381723, 348558, 312873, 275988, 239148, 203463, 169863, 139068, 111573, 87648, 67353, 50568, 37038, 26418, 18312, 12306, 7995, 5004, 3003, 1716, 924, 462, 210, 84, 28, 7, 1
Offset: 1
a(2)=7: 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000.
-
Rest@ CoefficientList[Series[(x - x^10)/(1 - x) ((1 - x^10)/(1 - x))^#, {x, 0, 9 (# + 1)}], x] &@ 6 (* or *)
Function[w, Count[w, #] & /@ Range[Max@ w]]@ Map[Total@ IntegerDigits@ # &, Range[10^#, 10^(# + 1) - 1]] &@ 6 (* Michael De Vlieger, Dec 07 2016 *)
-
b=vector(63, i, 0); for(n=1000000, 9999999, a=eval(Vec(Str(n))); b[sum(j=1, 7, a[j])]++); for(n=1, 63, print1(b[n], ", "))
-
Vec((1-x^9)*(1-x^10)^6/(1-x)^7) \\ shorter than (1-x^9)/(1-x)*((1-x^10)/(1-x))^6, but not better. - M. F. Hasler, Mar 05 2017
A297178
Triangle read by rows: T(n,k) = number of partitions of genus 2 of n elements with k parts (n >= 6, 2 <= k <= n-4).
Original entry on oeis.org
1, 7, 21, 28, 210, 161, 84, 1134, 2184, 777, 210, 4410, 15330, 13713, 2835, 462, 13860, 75075, 121275, 63063, 8547, 924, 37422, 289905, 729960, 685608, 233772, 22407, 1716, 90090, 942942, 3396393, 4972968, 3063060, 738738, 52767, 3003, 198198, 2690688, 13096083, 27432405, 26342316, 11477466, 2063061, 114114
Offset: 6
Triangle begins (see Table 3.2 in Yip's thesis):
1;
7, 21;
28, 210, 161;
84, 1134, 2184, 777;
210, 4410, 15330, 13713, 2835;
462, 13860, 75075, 121275, 63063, 8547;
924, 37422, 289905, 729960, 685608, 233772, 22407;
...
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 7.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 12.
- Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
- Martha Yip, Genus one partitions, Master Thesis, University of Waterloo, 2006.
A017764
a(n) = binomial coefficient C(n,100).
Original entry on oeis.org
1, 101, 5151, 176851, 4598126, 96560646, 1705904746, 26075972546, 352025629371, 4263421511271, 46897636623981, 473239787751081, 4416904685676756, 38393094575497956, 312629484400483356, 2396826047070372396, 17376988841260199871, 119594570260437846171
Offset: 100
Cf. similar sequences of the binomial coefficients C(n,k):
A000012 (k = 0),
A001477 (k = 1),
A000217 (k = 2),
A000292 (k = 3),
A000332 (k = 4),
A000389 (k = 5),
A000579-
A000582 (k = 6..9)
A001287 (k = 10),
A001288 (k = 11),
A010965-
A011001 (k = 12..48),
A017713-
A017763 (k = 49..99), this sequence (k = 100).
-
[Binomial(n,100): n in [100..130]]; // G. C. Greubel, Nov 24 2017
-
Table[Binomial[n, 100], {n, 100, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
-
a(n)=binomial(n,100) \\ Charles R Greathouse IV, Jun 28 2012
-
A017764_list, m = [], [1]*101
for _ in range(10**2):
A017764_list.append(m[-1])
for i in range(100):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
[binomial(n, 100) for n in range(100,115)] # Zerinvary Lajos, May 23 2009
A053643
a(n) = ceiling(binomial(n,6)/n).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 4, 10, 21, 42, 77, 132, 215, 334, 501, 728, 1032, 1428, 1938, 2584, 3392, 4389, 5609, 7084, 8855, 10964, 13455, 16380, 19793, 23751, 28319, 33563, 39556, 46376, 54106, 62832, 72650, 83657, 95960, 109668, 124900
Offset: 1
- Robert Israel, Table of n, a(n) for n = 1..10000
- R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-5,10,-10,5,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,5,-10,10,-5,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-5,10,-10,5,-1).
-
[Ceiling(Binomial(n,6)/n) : n in [1..50]]; // Wesley Ivan Hurt, Nov 01 2015
-
seq(ceil(binomial(n,5)/6), n=0..50); # Zerinvary Lajos, Jan 12 2009
-
Table[Ceiling[Binomial[n, 6]/n], {n, 50}] (* Michael De Vlieger, Nov 01 2015 *)
-
vector(50, n, ceil(binomial(n, 6)/n)) \\ Altug Alkan, Nov 01 2015
-
[ceil(binomial(n,6)/n) for n in (1..50)] # G. C. Greubel, May 17 2019
A117411
Skew triangle associated to the Euler numbers.
Original entry on oeis.org
1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0
Triangle begins
1;
0, 1;
0, -4, 1;
0, 0, -12, 1;
0, 0, 16, -24, 1;
0, 0, 0, 80, -40, 1;
0, 0, 0, -64, 240, -60, 1;
0, 0, 0, 0, -448, 560, -84, 1;
0, 0, 0, 0, 256, -1792, 1120, -112, 1;
0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1;
0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1;
0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1;
0, 0, 0, 0, 0, 0, 4096, -67584, 126720, -59136, 7920, -264, 1;
-
A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
[A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
-
T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
-
def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022
A128629
A triangular array generated by moving Pascal sequences to prime positions and embedding new sequences at the nonprime locations. (cf. A007318 and A000040).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 9, 10, 5, 1, 1, 6, 10, 16, 15, 6, 1, 1, 5, 18, 20, 25, 21, 7, 1, 1, 8, 15, 40, 35, 36, 28, 8, 1, 1, 9, 27, 35, 75, 56, 49, 36, 9, 1
Offset: 1
Row six begins 1 6 18 40 75 126 ... because rows two and three are
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
The array begins
1 1 1 1 1 1 1 1 1 A000012
1 2 3 4 5 6 7 8 9 A000027
1 3 6 10 15 21 28 36 45 A000217
1 4 9 16 25 36 49 64 81 A000290
1 4 10 20 35 56 84 120 165 A000292
1 6 18 40 75 126 196 288 405 A002411
1 5 15 35 70 126 210 330 495 A000332
1 8 27 64 125 216 343 512 729 A000578
1 9 36 100 225 441 784 1296 2025 A000537
1 8 30 80 175 336 588 960 1485 A002417
1 6 21 56 126 252 462 792 1287 A000389
1 12 54 160 375 756 1372 2304 3645 A019582
1 7 28 84 210 462 924 1716 3003 A000579
1 10 45 140 350 756 1470 2640 4455 A027800
1 12 60 200 525 1176 2352 4320 7425 A004302
1 16 81 256 625 1296 2401 4096 6561 A000583
1 8 36 120 330 792 1716 3432 6435 A000580
1 18 108 400 1125 2646 5488 10368 18225 A019584
1 9 45 165 495 1287 3003 6435 12870 A000581
1 16 90 320 875 2016 4116 7680 13365 A119771
1 15 90 350 1050 2646 5880 11880 22275 A001297
1 12 63 224 630 1512 3234 6336 11583 A027810
1 10 55 220 715 2002 5005 11440 24310 A000582
1 24 162 640 1875 4536 9604 18432 32805 A019583
1 16 100 400 1225 3136 7056 14400 27225 A001249
1 14 84 336 1050 2772 6468 13728 27027 A027818
1 27 216 1000 3375 9261 21952 46656 91125 A059827
1 20 135 560 1750 4536 10290 21120 40095 A085284
-
A128629 := proc(n,m) if n = 1 then 1; elif isprime(n) then p := numtheory[pi](n) ; binomial(p+m-1,p) ; else a := 1 ; for p in ifactors(n)[2] do a := a* procname(op(1,p),m)^ op(2,p) ; od: fi; end: # R. J. Mathar, Sep 09 2009
A-number added to each row of the examples by
R. J. Mathar, Sep 09 2009
A175113
a(n) = ((2*n + 1)^6 + 1)/2.
Original entry on oeis.org
1, 365, 7813, 58825, 265721, 885781, 2413405, 5695313, 12068785, 23522941, 42883061, 74017945, 122070313, 193710245, 297411661, 443751841, 645733985, 919132813, 1282863205, 1759371881, 2375052121, 3160681525, 4151882813
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Point counts of D_k and some A_k and E_k integer lattices inside hypercubes, arXiv:1002.3844, Variable V_6^(g)(n).
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
I:=[1, 365, 7813, 58825, 265721, 885781, 2413405]; [n le 7 select I[n] else 7*Self(n-1) - 21*Self(n-2) + 35*Self(n-3) - 35*Self(n-4) + 21*Self(n-5) - 7*Self(n-6) + Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 20 2012
-
CoefficientList[Series[(1 + 358*x + 5279*x^2 + 11764*x^3 + 5279*x^4 + 358*x^5 + x^6)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 20 2012 *)
Comments