cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 123 results. Next

A213745 Triangle of numbers C^(6)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 6 appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1709, 1, 8, 36, 120, 330, 792, 1716, 3424, 6371, 1, 9, 45, 165, 495, 1287, 3003, 6426, 12789, 23905, 1, 10
Offset: 0

Views

Author

Keywords

Comments

For k<=5, the triangle coincides with triangle A213744.
We have over columns of the triangle: T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A000389(n) for n>=9, T(n,6)=A000579(n) for n>=11, T(n,7)=A063267 for n>=5, T(n,8)=A063417 for n>=6, T(n,9)=A063418 for n>=7.

Examples

			Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....35
.5..|..1.....5....15....35....70....126
.6..|..1.....6....21....56...126....252...462
.7..|..1.....7....28....84...210....462...924....1709
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[7] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(6)(n,k)=sum{r=0,...,floor(k/7)}(-1)^r*C(n,r)*C(n-7*r+k-1, n-1).
A generalization. The numbers C^(t)(n,k) of combinations with repetitions from n different elements over k, for each of them not more than t>=1 appearances allowed, are enumerated by the formula:
C^(t)(n,k)=sum{r=0,...,floor(k/(t+1))}(-1)^r*C(n,r)*C(n-(t+1)*r+k-1, n-1).
In case t=1, it is binomial coefficient C^(t)(n,k)=C(n,k), and we have the combinatorial identity: sum{r=0,...,floor(k/2)}(-1)^r*C(n,r)*C(n-2*r+k-1, n-1)=C(n,k). On the other hand, if t=n, then r=0, and for the corresponding numbers of combinations with repetitions without a restriction on appearances of elements we obtain a well known formula C(n+k-1, n-1) (cf. triangle A059481).
In addition, note that, if k<=t, then C^(t)(n,k)=C(n+k-1, n-1). Therefore, triangle {C^(t+1)(n,k)} coincides with the previous triangle {C^(t)(n,k)} for k<=t.

A299338 Expansion of 1 / ((1 - x)^7*(1 + x)^6).

Original entry on oeis.org

1, 1, 7, 7, 28, 28, 84, 84, 210, 210, 462, 462, 924, 924, 1716, 1716, 3003, 3003, 5005, 5005, 8008, 8008, 12376, 12376, 18564, 18564, 27132, 27132, 38760, 38760, 54264, 54264, 74613, 74613, 100947, 100947, 134596, 134596, 177100, 177100, 230230, 230230
Offset: 0

Views

Author

Colin Barker, Feb 07 2018

Keywords

Comments

Same as A000579 but with repeated terms.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)^7(1+x)^6),{x,0,50}],x] (* or *) LinearRecurrence[ {1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{1,1,7,7,28,28,84,84,210,210,462,462,924},50] (* Harvey P. Dale, Oct 09 2018 *)
  • PARI
    Vec(1 / ((1 - x)^7*(1 + x)^6) + O(x^40))

Formula

a(n) = (2*n^6 + 84*n^5 + 1400*n^4 + 11760*n^3 + 51968*n^2 + 112896*n + 92160) / 92160 for n even.
a(n) = (2*n^6 + 72*n^5 + 1010*n^4 + 6960*n^3 + 24278*n^2 + 39048*n + 20790) / 92160 for n odd.
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13) for n>12.

A344206 Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^binomial(k+5,6).

Original entry on oeis.org

1, 7, 28, 112, 210, 658, 924, 2388, 3409, 6475, 8008, 18746, 18564, 33600, 44640, 72408, 74613, 137746, 134596, 235655, 256102, 352066, 376740, 680260, 615930, 866229, 994336, 1400980, 1344904, 2172800, 1947792, 2929332, 2984905, 3784914, 4032420, 6128858, 5245786
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2021

Keywords

Crossrefs

A063267 Eighth column (k=7) of septinomial array A063265.

Original entry on oeis.org

6, 33, 116, 325, 786, 1709, 3424, 6426, 11430, 19437, 31812, 50375, 77506, 116265, 170528, 245140, 346086, 480681, 657780, 888009, 1184018, 1560757, 2035776, 2629550, 3365830, 4272021, 5379588, 6724491, 8347650
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Crossrefs

Cf. A000579 (column k=6 of A063265).

Programs

  • Maple
    [seq((binomial(n+7,n)-binomial(n+1,n)),n=1..29)]; # Zerinvary Lajos, Jun 23 2006
  • Mathematica
    Table[Binomial[n+7,n]-Binomial[n+1,n],{n,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{6,33,116,325,786,1709,3424,6426},30] (* Harvey P. Dale, Jan 06 2012 *)

Formula

a(n)= A063265(n+2, 7)= (n+1)*(n+2)*(n+10)*(n^4 + 22*n^3 + 193*n^2 + 792*n + 1512)/7!.
G.f.: (2-x)*(1-x+x^2)*(3-3*x+x^2)/(1-x)^8; the numerator polynomial is N7(7, x) = 6 - 15*x + 20*x^2 - 15*x^3 + 6*x^4 - x^5 from row n=7 of array A063266.
a(n) = binomial(n+7,n) - binomial(n+1,n). - Zerinvary Lajos, Jun 23 2006
a(n) = binomial(n+7,n) + binomial(n+6,n) + binomial(n+5,n) + binomial(n+4,n) + binomial(n+3,n) + binomial(n+2,n). - Zerinvary Lajos, Jun 23 2006
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=6, a(1)=33, a(2)=116, a(3)=325, a(4)=786, a(5)=1709, a(6)=3424, a(7)=6426. - Harvey P. Dale, Jan 06 2012

Extensions

More terms from Zerinvary Lajos, Jun 23 2006

A081905 Third binomial transform of binomial(n+6, 6).

Original entry on oeis.org

1, 10, 79, 552, 3567, 21810, 127905, 725820, 4009920, 21664000, 114840064, 598865920, 3078537216, 15626600448, 78431059968, 389685706752, 1918516592640, 9367021682688, 45387134009344, 218388081147904, 1044061452500992, 4961718019031040, 23449374679891968, 110252343064264704
Offset: 0

Views

Author

Paul Barry, Mar 31 2003

Keywords

Comments

Binomial transform of A081904.
4th binomial transform of (1,6,15,20,15,6,1,0,0,0,...).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)^6/(1-4*x)^7)); // G. C. Greubel, Oct 17 2018
  • Mathematica
    CoefficientList[Series[(1-3x)^6/(1-4x)^7,{x,0,20}],x] (* or *) LinearRecurrence[{28,-336,2240,-8960,21504,-28672,16384},{1,10,79,552,3567,21810,127905},20] (* Harvey P. Dale, Aug 14 2014 *)
  • PARI
    x='x+O(x^30); Vec((1-3*x)^6/(1-4*x)^7) \\ G. C. Greubel, Oct 17 2018
    

Formula

a(n) = 4^n*(n^6 + 129*n^5 + 5845*n^4 + 115215*n^3 + 993874*n^2 + 3308616*n + 2949120)/2949120.
G.f.: (1-3*x)^6/(1-4*x)^7.
a(n) = 28*a(n-1) - 336*a(n-2) + 2240*a(n-3) - 8960*a(n-4) + 21504*a(n-5) - 28672*a(n-6) + 16384*a(n-7); a(0)=1, a(1)=10, a(2)=79, a(3)=552, a(4)=3567, a(5)=21810, a(6)=127905. - Harvey P. Dale, Aug 14 2014
E.g.f.: (720 + 4320*x + 5400*x^2 + 2400*x^3 + 450*x^4 + 36*x^5 + x^6)*exp(4*x) / 720. - G. C. Greubel, Oct 17 2018

A095662 Seventh column (m=6) of (1,3)-Pascal triangle A095660.

Original entry on oeis.org

3, 19, 70, 196, 462, 966, 1848, 3300, 5577, 9009, 14014, 21112, 30940, 44268, 62016, 85272, 115311, 153615, 201894, 262108, 336490, 427570, 538200, 671580, 831285, 1021293, 1246014, 1510320, 1819576, 2179672, 2597056, 3078768, 3632475
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=8, a(n-8) is the number of 6-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007

Crossrefs

Sixth column: A000574. Eighth column: A095663.

Programs

  • Mathematica
    CoefficientList[Series[(3-2x)/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{3,19,70,196,462,966,1848},40] (* Harvey P. Dale, Mar 30 2014 *)

Formula

G.f.: (3-2*x)/(1-x)^7.
a(n)= binomial(n+5, 5)*(n+18)/6 = 3*b(n)-2*b(n-1), with b(n):=binomial(n+6, 6); cf. A000579.
a(0)=3, a(1)=19, a(2)=70, a(3)=196, a(4)=462, a(5)=966, a(6)=1848, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Mar 30 2014

A105939 a(n) = binomial(n+3,3)*binomial(n+6,3).

Original entry on oeis.org

20, 140, 560, 1680, 4200, 9240, 18480, 34320, 60060, 100100, 160160, 247520, 371280, 542640, 775200, 1085280, 1492260, 2018940, 2691920, 3542000, 4604600, 5920200, 7534800, 9500400, 11875500, 14725620, 18123840, 22151360, 26898080, 32463200, 38955840, 46495680
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Comments

a(n) is the number of ordered pairs (A,B) of size 3 subsets of {1,2,...,n+6} such that A and B are disjoint. - Geoffrey Critzer, Sep 03 2013

Examples

			If n=0 then C(0+3,0)*C(0+6,3) = C(3,0)*C(6,3) = 1*20 = 20.
If n=8 then C(8+3,8)*C(8+6,3) = C(11,8)*C(14,3) = 165*364 = 60060.
		

Crossrefs

Programs

  • Magma
    A105939:= func< n | 20*Binomial(n+6,6) >;
    [A105939(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
    
  • Mathematica
    nn=25; f[x_]:=Exp[x](x^3/3!)^2;Range[0,nn]! CoefficientList[Series[ a=f''''''[x],{x,0,nn}],x] (* Geoffrey Critzer, Sep 03 2013 *)
    Table[Binomial[n+3,3]Binomial[n+6,3],{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{20,140,560,1680,4200,9240,18480},30] (* Harvey P. Dale, Mar 09 2022 *)
    20*Binomial[Range[0,40] +6,6] (* G. C. Greubel, Mar 11 2025 *)
  • SageMath
    def A105939(n): return 20*binomial(n+6,6)
    print([A105939(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025

Formula

G.f.: 20/(1-x)^7. - Colin Barker, Jun 06 2012
E.g.f.: (d/dx)^6 (x^3/3!)^2 * exp(x). - Geoffrey Critzer, Sep 03 2013
a(n) = A000292(n+1)*A000292(n+4) = 20*A000579(n+6). - R. J. Mathar, Nov 30 2015
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 3/50.
Sum_{n>=0} (-1)^n/a(n) = 48*log(2)/5 - 661/100. (End)
E.g.f.: (1/36)*(720 + 4320*x + 5400*x^2 + 2400*x^3 + 450*x^4 + 36*x^5 + x^6)*exp(x). - G. C. Greubel, Mar 11 2025

Extensions

More terms from Geoffrey Critzer, Sep 03 2013

A115567 a(n) = C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 126, 246, 465, 847, 1485, 2509, 4095, 6475, 9948, 14892, 21777, 31179, 43795, 60459, 82159, 110055, 145498, 190050, 245505, 313911, 397593, 499177, 621615, 768211, 942648, 1149016, 1391841, 1676115, 2007327, 2391495
Offset: 0

Views

Author

Jonathan Vos Post, Mar 12 2006

Keywords

Comments

a(n) = n + T(n) + Tet(n) + Ptop(n) + 5-Simplex(n) + 6-Simplex(n), where T(n) = n-th triangular number A000217(n), Tet(n) = n-th tetrahedral number A000292(n), Ptop(n) = n-th pentatope number A000332(n), 5-Simplex(n) = n-th 5-simplex number A000389(n), 6-Simplex(n) = n-th 6-simplex number A000579(n).
By analogy to A004006, A055795 and A057703, I presume that a(n) = Answer to the question: if you have a tall building and 6 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries?

Crossrefs

Programs

  • Magma
    [n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720: n in [0..30]]; // G. C. Greubel, Nov 25 2017
  • Maple
    seq(sum(binomial(n,k),k=1..6),n=0..36); # Zerinvary Lajos, Dec 13 2007
  • Mathematica
    Table[n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, {n,0,30}] (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    for(n=0,30, print1(n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, ", ")) \\ G. C. Greubel, Nov 25 2017
    
  • Sage
    [binomial(n,2)+binomial(n,4)+binomial(n,6) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
    
  • Sage
    [binomial(n,1)+binomial(n,3)+binomial(n,5)+binomial(n,2)+binomial(n,4)+binomial(n,6) for n in range(0, 37)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).
a(n) = A000579(n) + A000389(n) + A000332(n) + A000292(n) + A000217(n) + n.
a(n) = A000579(n) + A057703(n).
G.f.: x*(1-x+x^2)*(1-3*x+3*x^2)/(1-x)^7. - Colin Barker, Mar 16 2012
From G. C. Greubel, Nov 25 2017: (Start)
a(n) = n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720.
E.g.f.: x*(720 + 360*x + 120*x^2 + 30*x^3 + 6*x^4 + x^5)*exp(x)/720. (End)

A124089 a(n) = binomial(n,6)-1.

Original entry on oeis.org

0, 6, 27, 83, 209, 461, 923, 1715, 3002, 5004, 8007, 12375, 18563, 27131, 38759, 54263, 74612, 100946, 134595, 177099, 230229, 296009, 376739, 475019, 593774, 736280, 906191, 1107567, 1344903, 1623159, 1947791, 2324783, 2760680, 3262622
Offset: 6

Views

Author

Zerinvary Lajos, Nov 25 2006

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n,6)-1 : n in [6..40]]; // Wesley Ivan Hurt, Dec 27 2023
  • Maple
    [seq(binomial(n,6)-1,n=6..42)];
  • Mathematica
    Binomial[Range[6,40],6]-1 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,6,27,83,209,461,923},40] (* Harvey P. Dale, Dec 26 2015 *)

Formula

a(n) = A000579(n)-1.
a(0)=0, a(1)=6, a(2)=27, a(3)=83, a(4)=209, a(5)=461, a(6)=923, a(n)= 7*a(n-1)- 21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+ a(n-7). - Harvey P. Dale, Dec 26 2015

A247976 Triangle read by rows: T(n,k) generated by m-gon expansions in the case of odd m with "vertex to vertex" version or even m with "vertex to side" version. (See comment for details.)

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7
Offset: 1

Views

Author

Kival Ngaokrajang, Sep 28 2014

Keywords

Comments

Refer to triangle expansions in A061777 and A101946 (and their companions for m-gons) which are "vertex to vertex" and "vertex to side" versions respectively. The label values at each iteration can be arranged as triangle. Any m-gon can also be arranged as the same triangle with conditions: (i) m is odd and expansion is "vertex to vertex" version or (ii) m is even and expansion is "vertex to side" version. m*Sum_{i=1..k}T(n,k) gives the total label value in n-th iteration. See illustration.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  2;
  1,  2,  1,  2;
  1,  2,  1,  3,  3;
  1,  3,  3,  1,  3,  3;
  1,  3,  3,  1,  4,  6,  4;
  1,  4,  6,  4,  1,  4,  6,  4;
  1,  4,  6,  4,  1,  5, 10, 10,  5;
  1,  5, 10, 10,  5,  1,  5, 10, 10, 5;
  ...
		

Crossrefs

Rows sum: A027383.
Column (start from 1s): c3=A008805, c4=A058187, c5=A000332 repeated, c6=A000389 repeated, c7=A000579 repeated.
Vertex to vertex: A061777, A247618, A247619, A247620.
Vertex to side: A101946, A247903, A247904, A247905.
Cf. A074909.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, Floor[(n+1)/2], If[OddQ[n], If[k<=(n+ 1)/2, T[n-1, k], T[n-1, k-1] + T[n-1, k]], If[kG. C. Greubel, Feb 18 2022 *)
  • Sage
    @CachedFunction
    def T(n,k): # A247976
        if (k==1): return 1
        elif (k==n): return (n+1)//2
        elif (n%2==1): return T(n-1,k) if (k <= (n+1)/2) else T(n-1,k-1) + T(n-1,k)
        else: return T(n-1,k-1)+T(n-1,k) if (k < (n+2)/2) else T(n,k-n/2)
    flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 18 2022

Formula

T(n, k) = ( T(n-1, k) if k <= (n+1)/2 otherwise T(n-1, k-1) + T(n-1, k) ) for odd n rows, ( T(n-1, k-1) + T(n-1, k) if k < (n+2)/2 otherwise T(n, k - n/2) ) for even n rows, with T(n, 1) = 1 and T(n, n) = floor((n+1)/2). - G. C. Greubel, Feb 18 2022
Previous Showing 71-80 of 123 results. Next