A346954
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1736, 9030, 60355, 561550, 6188996, 69919850, 781211795, 8854058850, 106994019406, 1433756147470, 21287253921635, 339206526695750, 5630710652048216, 96341917117951890, 1708973354556320875, 31787279786739738250, 623964823224788294426
Offset: 4
-
nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
A346955
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^5 / 5! ).
Original entry on oeis.org
1, 15, 140, 1050, 6951, 42651, 253660, 1594230, 12463451, 134921787, 1806513072, 25539589530, 355175465191, 4797717669123, 63797550625676, 860468790181686, 12275324511112971, 192498455326842819, 3353266112959628272, 63379650000684213834
Offset: 5
-
nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
a[n_] := a[n] = StirlingS2[n, 5] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]
A348468
Expansion of e.g.f. sqrt(exp(x)*(2-exp(x))).
Original entry on oeis.org
1, 0, -1, -3, -10, -45, -271, -2058, -18775, -199335, -2410516, -32683563, -490870315, -8087188200, -144994236661, -2810079139143, -58536519252130, -1304198088413265, -30946462816602331, -779104979758256298, -20742005411397108595, -582214473250983046155, -17184302765073000634276
Offset: 0
-
m = 22; Range[0, m]! * CoefficientList[Series[Sqrt[Exp[x]*(2 - Exp[x])], {x, 0, m}], x] (* Amiram Eldar, Oct 19 2021 *)
-
my(x='x+O('x^25)); Vec(serlaplace(sqrt(exp(x)*(2-exp(x)))))
A355218
a(n) = Sum_{k>=1} (3*k - 1)^n / 2^k.
Original entry on oeis.org
1, 5, 43, 557, 9643, 208685, 5419243, 164184557, 5684837803, 221440158125, 9584118542443, 456289689634157, 23698327407870763, 1333388917719691565, 80794290325166308843, 5245268489291712773357, 363231496206350038884523, 26725646191850556128889005, 2082075690178933613292014443
Offset: 0
-
nmax = 18; CoefficientList[Series[Exp[2 x]/(2 - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2^n + Sum[Binomial[n, k] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
A355219
a(n) = Sum_{k>=1} (4*k - 2)^n / 2^k.
Original entry on oeis.org
1, 6, 68, 1176, 27152, 783456, 27126848, 1095801216, 50589024512, 2627443262976, 151623974601728, 9624874873952256, 666516443992297472, 50002158357801885696, 4039720490206565777408, 349685083067909962039296, 32287291853754803207340032, 3167488677197974581176303616
Offset: 0
-
nmax = 17; CoefficientList[Series[Exp[2 x]/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2^n + Sum[Binomial[n, k] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
A355220
a(n) = Sum_{k>=1} (4*k - 1)^n / 2^k.
Original entry on oeis.org
1, 7, 81, 1399, 32289, 931687, 32259441, 1303134679, 60160827969, 3124574220487, 180312309395601, 11445969681199159, 792626097462398049, 59462922484586318887, 4804064349575887075761, 415847988794676360818839, 38396277196654611908582529, 3766800071614388562865514887
Offset: 0
-
nmax = 17; CoefficientList[Series[Exp[3 x]/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 3^n + Sum[Binomial[n, k] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
A052825
A simple grammar: partial sums of A008965.
Original entry on oeis.org
0, 0, 1, 3, 6, 11, 18, 31, 50, 85, 144, 251, 438, 789, 1420, 2601, 4792, 8907, 16618, 31219, 58814, 111301, 211180, 401925, 766648, 1465899, 2808082, 5389509, 10360576, 19948155, 38460946, 74253513, 143527180, 277746975, 538048150, 1043342277, 2025049108
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(C),C=Sequence(Z,1 <= card),S=Prod(C,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
h := n -> add(numtheory:-phi(j)/j*log((x^j-1)/(2*x^j-1)), j=1..n):
seq(coeff(series((x/(1-x))*h(n),x,n+1),x,n),n=0..36); # Peter Luschny, Oct 25 2015
-
m = 40;
gf = (x/(1-x))*Sum[EulerPhi[j]/j*Log[(x^j-1)/(2*x^j-1)], {j,1,m}] + O[x]^m;
CoefficientList[gf, x] (* Jean-François Alcover, Jun 03 2019 *)
-
var('x'); a = lambda n: taylor(x/(1-x) * sum([taylor(euler_phi(i)/i * log((x^i - 1)/(2*x^i - 1)), x, 0, n) for i in range(1, n+1)]), x, 0, n).coefficient(x^n) # Danny Rorabaugh, Oct 25 2015
A052861
E.g.f.: log((1-x)/(1-2*x))*x/(1-x).
Original entry on oeis.org
0, 0, 2, 15, 116, 1030, 10644, 127428, 1750944, 27325296, 479288160, 9355658400, 201405744000, 4743245520000, 121334466758400, 3350276227872000, 99309556729958400, 3145135939426252800
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Sequence(Z,1 <= card),C=Cycle(B),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[Log[(1-x)/(1-2*x)]*x/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
Flatten[{0,Table[FullSimplify[-n!*(EulerGamma + I*Pi + 2^n*LerchPhi[2,1,n] + PolyGamma[0,n])],{n,1,20}]}] (* Vaclav Kotesovec, Oct 01 2013 *)
A080163
Sum of an infinite series: a(n) = Sum_{k>=0} ((k+1)*(k+2))^n/(16*(2^k)).
Original entry on oeis.org
1, 26, 1636, 191336, 35909776, 9877824416, 3744949458496, 1871860519454336, 1192747133878118656, 943718459840134969856, 907745644208033315808256, 1043182479702092427281524736, 1411605714773024334343061671936
Offset: 1
-
Table[1/8*Sum[Binomial[n,i]*(n+i)!*SeriesCoefficient[Exp[x]/(2-Exp[x]),{x,0,n+i}],{i,0,n}],{n,1,20}] (* Vaclav Kotesovec after Benoit Cloitre, Jun 29 2013 *)
A090665
Triangle read by rows: T(n,k) = number of preferential arrangements of n things where the first object has rank k.
Original entry on oeis.org
1, 2, 1, 6, 5, 2, 26, 25, 18, 6, 150, 149, 134, 84, 24, 1082, 1081, 1050, 870, 480, 120, 9366, 9365, 9302, 8700, 6600, 3240, 720, 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040, 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320
Offset: 1
Eugene McDonnell (eemcd(AT)mac.com), Dec 16 2003
Triangle starts:
01: 1;
02: 2, 1;
03: 6, 5, 2;
04: 26, 25, 18, 6;
05: 150, 149, 134, 84, 24;
06: 1082, 1081, 1050, 870, 480, 120;
07: 9366, 9365, 9302, 8700, 6600, 3240, 720;
08: 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040;
09: 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320;
10: 14174522, 14174521, 14174010, 14155350, 13950720, 12930120, 10190880, 5957280, 2177280, 362880;
...
-
T = {n, k} |-> 2*Sum[i!*StirlingS2[n-1, i], {i, k, n-1}] + (k-1)i!*StirlingS2[n-1, k-1] (* Vincent Jackson, May 01 2023 *)
Comments