cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 144 results. Next

A108694 Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12, . . . ] DELTA [2, 1, 4, 2, 6, 3, 8, 4, 10, 5, 12, 6, . . . ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 2, 3, 9, 6, 13, 54, 69, 26, 75, 399, 747, 573, 150, 541, 3508, 8638, 9998, 5393, 1082, 4683, 35817, 109248, 169038, 139143, 57585, 9366, 47293, 416762, 1515531, 2935222, 3256907, 2064534, 691645, 94586
Offset: 0

Views

Author

Philippe Deléham, Jun 18 2005

Keywords

Comments

Related to preferential arrangements of n elements (A000670) and necklaces of sets of labeled beads (A000629).

Examples

			1; 1, 2; 3, 9, 6; 13, 54, 69, 26; 75, 399, 747, 573, 150; ...
		

Crossrefs

Formula

Sum_{ k>=0 } T(n, k) = n!*3^n = A032031(n).
T(n, 0) = A000670(n); T(n, n) = A000629(n).

A136246 a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)*A062208(k).

Original entry on oeis.org

1, 1, 32, 2712, 449102, 122886128, 50225389432, 28670796914144, 21789885975738524, 21271115441652577064, 25938193213744579451420, 38638907727108476424404864, 69044758685363149615280762608, 145768622491129079115419544343808, 358961215083489204505055286181798208
Offset: 0

Views

Author

Vladeta Jovovic, Mar 16 2008

Keywords

Crossrefs

Row n=3 of A330942.

Programs

  • Maple
    A000629 := proc(n) local k ; sum( k^n/2^k,k=0..infinity) ; end: A062208 := proc(n) option remember ; local a,stir,ni,n1,n2,n3,stir2,i,j,tmp ; a := 0 ; if n = 0 then RETURN(1) ; fi ; stir := combinat[partition](n) ; stir2 := {} ; for i in stir do if nops(i) <= 3 then tmp := i ; while nops(tmp) < 3 do tmp := [op(tmp),0] ; od: tmp := combinat[permute](tmp) ; for j in tmp do stir2 := stir2 union { j } ; od: fi ; od: for ni in stir2 do n1 := op(1,ni) ; n2 := op(2,ni) ; n3 := op(3,ni) ; a := a+combinat[multinomial](n,n1,n2,n3)*(A000629(3*n1+2*n2+n3)-1/2-2^(3*n1+2*n2+n3)/4)*(-3)^n2*2^n3 ; od: a/(2*6^n) ; end: A136246 := proc(n) local k ; add((-1)^(n-k)*combinat[stirling1](n,k)*A062208(k),k=0..n)/n! ; end: seq(A136246(n),n=0..14) ; # R. J. Mathar, Apr 01 2008
  • Mathematica
    a[n_] := Sum[Binomial[Binomial[j, 3] + n - 1, n] * Sum[(-1)^(i - j)* Binomial[i, j], {i, j, 3n}], {j, 0, 3n}];
    a /@ Range[0, 14] (* Jean-François Alcover, Feb 13 2020, after Andrew Howroyd *)
  • PARI
    a(n) = {sum(j=0, 3*n, binomial(binomial(j,3)+n-1, n) * sum(i=j, 3*n, (-1)^(i-j)*binomial(i,j)))} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = Sum_{m>=0} binomial(binomial(m,3)+n-1,n)/2^(m+1).
a(n) = Sum_{j=0..3*n} binomial(binomial(j,3)+n-1, n) * (Sum_{i=j..3*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020

Extensions

More terms from R. J. Mathar, Apr 01 2008
Terms a(13) and beyond from Andrew Howroyd, Feb 09 2020

A142071 Expansion of the exponential generating function 1 - log(1 - x*(exp(z) - 1)), triangle read by rows, T(n,k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 7, 12, 6, 0, 1, 15, 50, 60, 24, 0, 1, 31, 180, 390, 360, 120, 0, 1, 63, 602, 2100, 3360, 2520, 720, 0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 0, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 0, 1, 511, 18660
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 15 2008

Keywords

Comments

Row n gives the coefficients which express the sums of the n-th powers of the integers as a linear combination of binomial coefficients, thus:
Sum_{k=1..r} k^n = A103438(n+r,r) = Sum_{k=0..n} T(n+1,k) * C(r,k),
where, by convention, C(r,k) = 0 whenever r < k. - Robert B Fowler, Jan 16 2023

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   3,    2;
  0, 1,   7,   12,     6;
  0, 1,  15,   50,    60,    24;
  0, 1,  31,  180,   390,   360,   120;
  0, 1,  63,  602,  2100,  3360,  2520,   720;
  0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040;
  ...
		

Crossrefs

Column k = 0 is A000007.
Cf. A028246, A163626, A000629 (row sums).
Cf. A103438, A007318 (binomial coefficients).

Programs

  • Maple
    CL := (f, x) -> PolynomialTools:-CoefficientList(f, x):
    A142071row := proc(n) 1 - log(1 - x*(exp(z) - 1)):
    series(%, z, 12): CL(n!*coeff(%, z, n), x) end:
    for n from 0 by 1 to 7 do A142071row(n) od;
    # Alternative:
    A142071Row := proc(n) if n=0 then [1] else
    CL(convert(series(polylog(-n+1, z/(1+z)), z, n*2), polynom), z) fi end:
    seq(A142071Row(n), n=0..6); # Peter Luschny, Sep 06 2018
  • Mathematica
    T[n_, k_] := If[k==0, Floor[1/(n + 1)], (k - 1)!*StirlingS2[n, k]]; Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Jan 06 2024 *)

Formula

Row n gives the coefficients of the polynomial defined by p(x, 0) = 1 and for n > 0 p(x, n) = Sum_{k >= 0} k^(n-1)*(x/(1 + x))^k = PolyLog(-n+1, x/(1+x)).
T(n, k) = (k - 1)! * Stirling2(n, k) for k > 0. - Detlef Meya, Jan 06 2024

Extensions

Edited, T(0,0) = 1 prepended and new name by Peter Luschny, Sep 06 2018

A201338 E.g.f.: log((2 - exp(x))/(3 - 2*exp(x))).

Original entry on oeis.org

1, 4, 24, 196, 2040, 25924, 390264, 6804676, 135033720, 3007364164, 74315818104, 2018441506756, 59776933889400, 1917312391176004, 66216538949389944, 2449977966210378436, 96685769287005577080, 4053944607498740773444, 179973441341757042161784, 8433644996370680262923716
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2011

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 24*x^3/3! + 196*x^4/4! + 2040*x^5/5! +...
Note that A(x) = G(G(x)) where G(x) is an e.g.f. of A000629:
G(x) = x + 2*x^2/2! + 6*x^3/3! + 26*x^4/4! + 150*x^5/5! + 1082*x^6/6! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[Log[(2-E^x)/(3-2*E^x)], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, May 23 2013 *)
  • PARI
    {a(n)=n!*polcoeff(log((2-exp(x+x*O(x^n)))/(3-2*exp(x+x*O(x^n)))),n)}

Formula

E.g.f.: G(G(x)) where G(x) = log(1/(2-exp(x))) is an e.g.f. of A000629 (with offset 1), where A000629(n) is the number of necklaces of partitions of n+1 labeled beads.
E.g.f.: log(1+x) o x/(1-2*x) o exp(x)-1, a composition of functions.
a(n) ~ (n-1)! * (1/log(3/2))^n. - Vaclav Kotesovec, May 23 2013

A201731 a(n) = [x^n/n!] log( (n - (n-1)*exp(x)) / (n+1 - n*exp(x)) ).

Original entry on oeis.org

1, 4, 54, 1544, 75750, 5676492, 603041334, 86210654224, 15958892198070, 3713676157320020, 1061084890984465446, 365202873520507832856, 149027843082185351506950, 71144948740332156241755868, 39282974873393643411310747350, 24840594864924259316810487005216
Offset: 1

Views

Author

Paul D. Hanna, Dec 04 2011

Keywords

Comments

The function log((n - (n-1)*exp(x))/(n+1 - n*exp(x))) equals the n-th iteration of log(1/(2-exp(x))), the e.g.f. of A000629 (with offset 1), where A000629(n) is the number of necklaces of partitions of n+1 labeled beads.

Examples

			Let G(x) = log(1/(2-exp(x))) then the coefficients of x^n/n! in the k-th iteration of G(x) begin:
k=1: [(1), 2, 6, 26, 150, 1082, 9366, 94586, ..., A000629(n-1), ...];
k=2: [1,(4), 24, 196, 2040, 25924, 390264, 6804676, ..., A201338(n), ...];
k=3: [1, 6,(54), 654, 9990, 184686, 4015494, 100531374, ...];
k=4: [1, 8, 96, (1544), 31200, 760328, 21721056, 712459784, ...];
k=5: [1, 10, 150, 3010, (75750), 2295010, 81378150, 3307983010, ...];
k=6: [1, 12, 216, 5196, 156600, (5676492), 240593976, 11679764556, ...];
k=7: [1, 14, 294, 8246, 289590, 12224534, (603041334), 34053651926, ...];
k=8: [1, 16, 384, 12304, 493440, 23777296, 1338417024, (86210654224), ...]; ...
where the coefficients in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(log((n - (n-1)*exp(x+x*O(x^n)))/(n+1 - n*exp(x+x*O(x^n)))),n)}

Formula

a(n) = (n+1) * A201732(n+1).

A202687 Triangle arising in the computation of hypersigma, definition 2 (A191161).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 18, 1, 1, 8, 36, 104, 1, 1, 10, 60, 260, 750, 1, 1, 12, 90, 520, 2250, 6492, 1, 1, 14, 126, 910, 5250, 22722, 65562, 1, 1, 16, 168, 1456, 10500, 60592, 262248, 756688, 1, 1, 18, 216, 2184, 18900, 136332, 786744, 3405096, 9825030, 1
Offset: 0

Views

Author

Alonso del Arte, Dec 22 2011

Keywords

Comments

Given a squarefree number with n distinct prime factors put through the hypersigma function (A191161), each smaller divisor contributes a given number of "loose" 1s. Row n of this triangle tells how many loose 1s are contributed by prime divisors (column 1), by semiprime divisors (column 2), sphenic divisors (column 3) and so on up to column n - 1.
It may appear somewhat artificial that the leftmost and rightmost columns are all filled with 1s since under the hypersigma function, the smallest divisor of a number, 1, may be said to contribute two loose 1s (itself and the 1 in the recursion level immediately below). However, the reason for attributing one of these 1s to the number itself and the 1 in the recursion level below to that 1 in the recursion level above is to more clearly show how this triangle is tied to Pascal's triangle.

Examples

			Triangle starts:
  1;
  1,  1;
  1,  4,  1;
  1,  6, 18,   1;
  1,  8, 36, 104,    1;
  1, 10, 60, 260,  750,    1;
  1, 12, 90, 520, 2250, 6492, 1;
		

Crossrefs

Cf. A000629 (row sums).

Programs

  • Maple
    A202687 := proc(n,k)
        if k = 0 or k = n then
            1;
        else
            binomial(n,k)*add(procname(k,j),j=0..k) ;
        end if;
    end proc: # R. J. Mathar, Mar 15 2013
  • Mathematica
    a[0, k_] := 1; a[n_, n_] := 1; a[n_, k_] := a[n, k] = Binomial[n, k] Sum[a[k, j], {j, 0, k}]; ColumnForm[Table[a[n, k], {n, 0, 9}, {k, 0, n}], Center]

Formula

T(n, k) = binomial(n, k)*Sum_{j=0..k} T(k, j).

A221961 Number of n X n symmetric lonesum ternary matrices.

Original entry on oeis.org

1, 3, 18, 149, 1390, 13377
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2013

Keywords

Crossrefs

Cf. A000629 (the binary case).
See also A299906, A299907 for the general binary case.

Formula

Kim et al. (2013) give a formula.

A227044 a(n) = Sum_{k>=1} k^(2*n)/(2^k).

Original entry on oeis.org

1, 6, 150, 9366, 1091670, 204495126, 56183135190, 21282685940886, 10631309363962710, 6771069326513690646, 5355375592488768406230, 5149688839606380769088406, 5916558242148290945301297750, 8004451519688336984972255078166, 12595124129900132067036747870669270
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 29 2013

Keywords

Crossrefs

Bisection of A000629.
Cf. A080163.

Programs

  • Mathematica
    Table[Sum[k^(2*n)/(2^k), {k, 1, Infinity}], {n, 0, 20}]
    a[n_] := PolyLog[-2 n, 1/2]; a[0] = 1; Array[a, 15, 0] (* Peter Luschny, Sep 06 2020 *)
  • PARI
    {a(n) = sum(k=0, 2*n, (-2)^k * k! * stirling(2*n, k,2) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ (2n)!/(log(2))^(2*n+1).
a(n) = Sum_{k=0..2*n} (-2)^k * k! * Stirling2(2*n, k). - Paul D. Hanna, Apr 15 2018
a(n) = A000629(2*n). - Christian Krause, Nov 22 2022

A285868 Row sums of triangle A285867.

Original entry on oeis.org

1, 1, 4, 20, 126, 962, 8646, 89546, 1051350, 13811642, 200866326, 3205348346, 55704133590, 1047489675962, 21195507649686, 459258707587706, 10610386574074710, 260385846630175802, 6764666952807962646
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2017

Keywords

Comments

See A285867 for details.

Crossrefs

Formula

a(n) = Sum_{k=0..n} A285867(n, k).
a(n) = 1 for n = 0 and A000629(n) - n! for n >= 1.

A292915 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)/(2 - exp(x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 13, 1, 4, 11, 26, 75, 1, 5, 18, 51, 150, 541, 1, 6, 27, 94, 299, 1082, 4683, 1, 7, 38, 161, 582, 2163, 9366, 47293, 1, 8, 51, 258, 1083, 4294, 18731, 94586, 545835, 1, 9, 66, 391, 1910, 8345, 37398, 189171, 1091670, 7087261, 1, 10, 83, 566, 3195, 15666, 74067, 378214, 2183339, 14174522, 102247563
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A000670 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 3)*x^2/2! + (k^3 + 3*k^2 + 9*k + 13)*x^3/3! +  (k^4 + 4*k^3 + 18*k^2 + 52*k + 75) x^4/4! + ...
Square array begins:
    1,     1,     1,     1,     1,      1,  ...
    1,     2,     3,     4,     5,      6,  ...
    3,     6,    11,    18,    27,     38,  ...
   13,    26,    51,    94,   161,    258,  ...
   75,   150,   299,   582,  1083,   1910,  ...
  541,  1082,  2163,  4294,  8345,  15666,  ...
		

Crossrefs

Columns k=0..4 give A000670, A000629, A007047, A259533, A368317.
Rows n=0..2 give A000012, A000027, A102305.
Main diagonal gives A292916.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    T:= func< n,k | Coefficient(R!(Laplace( Exp(k*x)/(2-Exp(x)) )), n) >;
    A292915:= func< n,k | T(k,n-k) >;
    [A292915(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
    
  • Maple
    A:= proc(n, k) option remember; k^n +add(
           binomial(n, j)*A(j, k), j=0..n-1)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 27 2017
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[k x]/(2 - Exp[x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, HurwitzLerchPhi[1/2, -n, k]/2][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • PARI
    a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
    A(n, k) = 2^k*a000670(n)-sum(j=0, k-1, 2^j*(k-1-j)^n); \\ Seiichi Manyama, Dec 25 2023
    
  • SageMath
    def T(n,k): return factorial(n)*( exp(k*x)/(2-exp(x)) ).series(x, n+1).list()[n]
    def A292915(n,k): return T(k,n-k)
    flatten([[A292915(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024

Formula

E.g.f. of column k: exp(k*x)/(2 - exp(x)).
A(n,k) = 2^k*A000670(n) - Sum_{j=0..k-1} 2^j*(k-1-j)^n. - Seiichi Manyama, Dec 25 2023
Previous Showing 91-100 of 144 results. Next