cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A309865 Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 11, 5, 2, 2, 6, 34, 34, 6, 2, 2, 7, 156, 2136, 156, 7, 2, 2, 8, 1044, 7013320, 7013320, 1044, 8, 2, 2, 9, 12346, 1788782616656, 29281354514767168, 1788782616656, 12346, 9, 2
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2019

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 1 for k>n.
See A000088 and A000665 for more references.

Examples

			Triangle T(n,k) begins:
  2;
  2, 2;
  2, 3,    2;
  2, 4,    4,       2;
  2, 5,   11,       5,       2;
  2, 6,   34,      34,       6,    2;
  2, 7,  156,    2136,     156,    7, 2;
  2, 8, 1044, 7013320, 7013320, 1044, 8, 2;
  ...
		

Crossrefs

Cf. A309858 (the same as square array).

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    T:= proc(n, k) option remember; `if`(k>n-k,
          T(n, n-k), b(n$2, [], k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..9);

Formula

T(n,k) = T(n,n-k) for 0 <= k <= n.

A319540 Number of unlabeled 3-uniform hypergraphs spanning n vertices such that every pair of vertices appears together in some block.

Original entry on oeis.org

1, 1, 0, 1, 2, 14, 964, 3908438
Offset: 0

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 14 hypergraphs:
              {{123}{145}{245}{345}}
            {{123}{124}{135}{245}{345}}
            {{123}{145}{235}{245}{345}}
          {{123}{134}{145}{235}{245}{345}}
          {{123}{145}{234}{235}{245}{345}}
          {{124}{135}{145}{235}{245}{345}}
          {{125}{135}{145}{235}{245}{345}}
        {{123}{124}{135}{145}{235}{245}{345}}
        {{124}{135}{145}{234}{235}{245}{345}}
        {{125}{135}{145}{234}{235}{245}{345}}
      {{123}{124}{135}{145}{234}{235}{245}{345}}
      {{125}{134}{135}{145}{234}{235}{245}{345}}
    {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
		

Crossrefs

Extensions

a(6)-a(7) from Andrew Howroyd, Aug 17 2019

A323292 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 160, 4125, 193200, 19384225
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 15 hypergraphs:
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 160:
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>=2&],Union@@#==Range[n]&]],{n,6}]

Formula

Inverse binomial transform of A323293. - Andrew Howroyd, Aug 14 2019

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A323294 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(4) = 11 hypergraphs:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    seq(n)={Vec(serlaplace(1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2))} \\ Andrew Howroyd, Aug 18 2019

Formula

a(n) = binomial(n,2) for n >= 5. - Gus Wiseman, Jan 16 2019
Binomial transform is A289837. - Gus Wiseman, Jan 16 2019
a(n) = A000217(n-1) for n >= 5. - Alois P. Heinz, Jan 24 2019
E.g.f.: 1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2. - Andrew Howroyd, Aug 18 2019

A323297 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 16, 76, 271, 1212, 10158, 78290, 503231, 3495966, 33016534, 327625520, 3000119669, 28185006956, 308636238516, 3631959615948, 42031903439809, 493129893459310, 6264992355842706, 84639308481270656, 1159506969481515271, 16131054826385628592
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(4) = 16 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,3,4}}
  {{2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 8 unlabeled 3-uniform hypergraphs on 6 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 271:
   1 X {}
  20 X {{1,2,3}}
  90 X {{1,3,4},{2,3,4}}
  10 X {{1,2,3},{4,5,6}}
  60 X {{1,4,5},{2,4,5},{3,4,5}}
  60 X {{1,2,4},{1,3,4},{2,3,4}}
  15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
  15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

Binomial transform of A323296.
E.g.f.: exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). - Andrew Howroyd, Aug 18 2019

Extensions

a(10)-a(11) from Alois P. Heinz, Aug 11 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A051249 Pure 4-dimensional simplicial complexes on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 1044, 1788782616656, 234431745534048922731115555415680, 1994324729203114587259985605157804740271034553359179870979936357974016
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A309858.

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 20 2019

A319876 Irregular triangle read by rows where T(n,k) is the number of permutations of {1,...,n} whose action on 2-element subsets of {1,...,n} has k cycles.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 1, 0, 0, 14, 0, 9, 0, 1, 0, 0, 24, 50, 20, 0, 15, 10, 0, 0, 1, 0, 0, 0, 264, 0, 340, 0, 40, 0, 60, 0, 15, 0, 0, 0, 1, 0, 0, 0, 720, 1764, 504, 0, 1120, 630, 0, 0, 70, 105, 105, 0, 0, 21, 0, 0, 0, 0, 1, 0, 0, 0, 0, 13488, 0, 14112, 0, 3724, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2018

Keywords

Comments

The permutation
1 -> 1
2 -> 2
3 -> 4
4 -> 3
acts on unordered pairs of distinct elements of {1,2,3,4} to give
(1,2) -> (1,2)
(1,3) -> (1,4)
(1,4) -> (1,3)
(2,3) -> (2,4)
(2,4) -> (2,3)
(3,4) -> (3,4)
which has 4 cycles
(1,2)
(1,3) <-> (1,4)
(2,3) <-> (2,4)
(3,4)
so is counted under T(4,4).

Examples

			Triangle begins:
   1
   0   2
   0   2   3   1
   0   0  14   0   9   0   1
   0   0  24  50  20   0  15  10   0   0   1
   0   0   0 264   0 340   0  40   0  60   0  15   0   0   0   1
The T(4,4) = 9 permutations: (1243), (1324), (1432), (2134), (2143), (3214), (3412), (4231), (4321).
		

Crossrefs

Row n has A000124(n - 1) terms. Row sums are the factorial numbers A000142.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{2}]/.Rule@@@Table[{i,#[[i]]},{i,n}],{1}]],Length]==k&]],{n,5},{k,0,n*(n-1)/2}]

Formula

A000088(n) = (1/n!) * Sum_k 2^k * T(n,k).

A092337 Triangle read by rows: T(n,m) = number of 3-uniform hypergraphs with m hyperedges on n unlabeled nodes, where 0 <= m <= C(n,3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1, 1, 1, 3, 10, 38, 137, 509, 1760, 5557, 15709, 39433, 87659, 172933, 303277, 473827, 660950, 824410, 920446, 920446, 824410, 660950
Offset: 3

Views

Author

Gordon F. Royle, Mar 18 2004

Keywords

Comments

A 3-uniform hypergraph is a set of 3-subsets of the nodes with isomorphism determined by permutations of the node set. The numbers are calculated using Polya enumeration from the cycle index of the symmetric group Sym(n) in its action on 3-subsets of an n-set, which can easily be computed by MAGMA or GAP. A000665 is the sum of each row of the triangle.

Examples

			Triangle T(n,m) begins:
1, 1;
1, 1, 1, 1,  1;
1, 1, 2, 4,  6,  6,  6,   4,   2,   1,   1;
1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1;
		

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"]; Table[A = Subsets[Range[n], {3}];
      CoefficientList[CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /.
    Table[s[i] -> 1 + x^i, {i, 1, Binomial[n, 3]}], x], {n,3,7}] // Grid (* Geoffrey Critzer, Oct 28 2015 *)

A003190 Number of connected 2-plexes.

Original entry on oeis.org

1, 0, 1, 3, 29, 2101, 7011181, 1788775603301, 53304526022885278403, 366299663378889804782330207902, 1171638318502622784366970315262493034215728, 3517726593606524901243694560022510194169866584119717555335
Offset: 1

Views

Author

Keywords

Comments

The Palmer reference (incorrectly) has a(7)=7011349, a(8)=1788775603133, a(9)=53304526022885278659. - Sean A. Irvine, Mar 05 2015
Also connected 3-uniform hypergraphs on n vertices. - Gus Wiseman, Feb 23 2019

Examples

			From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(5) = 29 2-plexes:
  {{125}{345}}
  {{123}{245}{345}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A301924.
Cf. A000665 (unlabeled 3-uniform), A025035, A125791 (labeled 3-uniform), A289837, A301922, A302374 (labeled 3-uniform spanning), A302394, A306017, A319540, A320395, A322451 (unlabeled 3-uniform spanning), A323292-A323299.

Formula

Inverse Euler transform of A000665. - Sean A. Irvine, Mar 05 2015

Extensions

a(7)-a(9) corrected and extended by Sean A. Irvine, Mar 05 2015

A057783 Building block is 2 hexagons side-by-side; sequence gives number of pieces (polydohexes) that can be formed from n such pairs of hexagons.

Original entry on oeis.org

1, 6, 74, 1257, 25379, 544108, 12037738
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2000

Keywords

References

  • Computed by Brendan Owen.

Crossrefs

Extensions

Link updated by William Rex Marshall, Dec 16 2009
a(7) from Sean A. Irvine, Jul 02 2022
Previous Showing 11-20 of 21 results. Next