cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 189 results. Next

A026010 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.

Original entry on oeis.org

1, 2, 4, 7, 14, 25, 50, 91, 182, 336, 672, 1254, 2508, 4719, 9438, 17875, 35750, 68068, 136136, 260338, 520676, 999362, 1998724, 3848222, 7696444, 14858000, 29716000, 57500460, 115000920, 222981435, 445962870, 866262915, 1732525830, 3370764540
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is the number of integer compositions of n + 2 in which the even parts appear as often at even positions as at odd positions (confirmed up to n = 19). - Gus Wiseman, Mar 17 2018

Examples

			The a(3) = 7 compositions of 5 in which the even parts appear as often at even positions as at odd positions are (5), (311), (131), (113), (221), (122), (11111). Missing are (41), (14), (32), (23), (212), (2111), (1211), (1121), (1112). - _Gus Wiseman_, Mar 17 2018
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor((n+k)/2), Floor(k/2)): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Array[Sum[Binomial[Floor[(# + k)/2], Floor[k/2]], {k, 0, #}] &, 34, 0] (* Michael De Vlieger, May 16 2018 *)
    Table[2^(-1 + n)*(((2 + 3*#)*Gamma[(1 + #)/2])/(Sqrt[Pi]*Gamma[2 + #/2]) &[n + Mod[n, 2]]), {n,0,40}] (* Peter Pein, Nov 08 2018 *)
    Table[(1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*CatalanNumber[(2*n + 1 - (-1)^n)/4], {n, 0, 40}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, n--; sum(k=0,n, binomial(floor((n+k)/2), floor(k/2)))) \\ G. C. Greubel, Nov 08 2018
    

Formula

a(2*n) = ((3*n + 1)/(2*n + 1))*C(2*n + 1, n)= A051924(1+n), n>=0, a(2*n-1) = a(2*n)/2 = A097613(1+n), n >= 1. - Herbert Kociemba, May 08 2004
a(n) = Sum_{k=0..n} binomial(floor((n+k)/2), floor(k/2)). - Paul Barry, Jul 15 2004
Inverse binomial transform of A005774: (1, 3, 9, 26, 75, 216, ...). - Gary W. Adamson, Oct 22 2007
Conjecture: (n+3)*a(n) - 2*a(n-1) + (-5*n-3)*a(n-2) + 2*a(n-3) + 4*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 20 2013
a(n) = (1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*Catalan((2*n + 1 - (-1)^n)/4), where Catalan is the Catalan number = A000108. - G. C. Greubel, Nov 08 2018

A301854 Number of positive special sums of integer partitions of n.

Original entry on oeis.org

1, 3, 7, 13, 25, 40, 67, 100, 158, 220, 336, 452, 649, 862, 1228, 1553, 2155, 2738, 3674, 4612, 6124, 7497, 9857, 12118, 15524, 18821, 24152, 28863, 36549, 44002, 54576, 65125, 80943, 95470, 117991, 139382, 169389, 199144, 242925, 283353, 342139, 400701, 479001
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

A positive special sum of an integer partition y is a number n > 0 such that exactly one submultiset of y sums to n.

Examples

			The a(4) = 13 special positive subset-sums:
1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111),
1<=(211),  3<=(211),  4<=(211),
1<=(31),   3<=(31),   4<=(31),
2<=(22),   4<=(22),
4<=(4).
		

Crossrefs

Programs

  • Mathematica
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&];
    Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_combinations
    def A301854(n): return sum(sum(1 for r in Counter(sum(q) for l in range(1,len(p)+1) for q in multiset_combinations(p,l)).values() if r==1) for p in (tuple(Counter(x).elements()) for x in partitions(n))) # Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(35) from Alois P. Heinz, Apr 08 2018
a(36)-a(43) from Chai Wah Wu, Sep 26 2023

A321878 Number T(n,k) of partitions of n into colored blocks of equal parts, such that all colors from a set of size k are used and the colors are introduced in increasing order; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 1, 0, 5, 2, 0, 7, 5, 0, 11, 9, 1, 0, 15, 17, 2, 0, 22, 28, 5, 0, 30, 47, 10, 0, 42, 74, 21, 1, 0, 56, 116, 37, 2, 0, 77, 175, 67, 5, 0, 101, 263, 112, 10, 0, 135, 385, 187, 20, 0, 176, 560, 302, 40, 1, 0, 231, 800, 479, 72, 2, 0, 297, 1135, 741, 127, 5
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle contains only elements with 0 <= k <= A003056(n). T(n,k) = 0 for k > A003056(n).
For fixed k>=1, T(n,k) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2, 1-k))*n/3)) * sqrt(Pi^2 - 6*polylog(2, 1-k)) / (4*k!*sqrt(3*k)*Pi*n). - Vaclav Kotesovec, Sep 18 2019

Examples

			T(6,1) = 11: 111111a, 2a1111a, 22a11a, 222a, 3a111a, 3a2a1a, 33a, 4a11a, 4a2a, 5a1a, 6a.
T(6,2) = 9: 2a1111b, 22a11b, 3a111b, 3a2a1b, 3a2b1a, 3a2b1b, 4a11b, 4a2b, 5a1b.
T(6,3) = 1: 3a2b1c.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2;
  0,  3,   1;
  0,  5,   2;
  0,  7,   5;
  0, 11,   9,  1;
  0, 15,  17,  2;
  0, 22,  28,  5;
  0, 30,  47, 10;
  0, 42,  74, 21, 1;
  0, 56, 116, 37, 2;
  0, 77, 175, 67, 5;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A327285, A327286, A327287, A327288, A327289, A327290, A327291, A327292, A327293.
Row sums give A305106.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!:
    seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
    T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!;
    Table[Table[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

Formula

T(n,k) = 1/k! * Sum_{i=0..k} (-1)^i*binomial(k,i) A321884(n,k-i).
T(n*(n+1)/2,n) = T(A000217(n),n) = 1.
T(n*(n+3)/2,n) = T(A000096(n),n) = A000712(n).
Sum_{k=1..A003056(n)} k * T(n,k) = A322304(n).

A108796 Number of unordered pairs of partitions of n (into distinct parts) with empty intersection.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 33, 46, 68, 95, 140, 187, 266, 372, 507, 683, 948, 1256, 1692, 2263, 3003, 3955, 5248, 6824, 8921, 11669, 15058, 19413, 25128, 32149, 41129, 52578, 66740, 84696, 107389, 135310, 170277, 214386, 268151, 335261, 418896, 521204
Offset: 0

Views

Author

Wouter Meeussen, Jul 09 2005

Keywords

Comments

Counted as orderless pairs since intersection is commutative.

Examples

			Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3).
From _Gus Wiseman_, Oct 07 2023: (Start)
The a(6) = 4 pairs are:
  ((6),(5,1))
  ((6),(4,2))
  ((6),(3,2,1))
  ((5,1),(4,2))
(End)
		

Crossrefs

Column k=2 of A258280.
Main diagonal of A284593 times (1/2).
This is the strict case of A260669.
The ordered version is A365662 = strict case of A054440.
This is the disjoint case of A366132, with twins A366317.
A000041 counts integer partitions, strict A000009.
A002219 counts biquanimous partitions, strict A237258, ordered A064914.

Programs

  • Mathematica
    using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2
    nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&],{2}],Intersection@@#=={}&]],{n,15}] (* Gus Wiseman, Oct 07 2023 *)
  • PARI
    a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ Andrew Howroyd, Oct 10 2023

Formula

a(n) = ceiling(1/2 * [(x*y)^n] Product_{j>0} (1+x^j+y^j)). - Alois P. Heinz, Mar 31 2017
a(n) = ceiling(A365662(n)/2). - Gus Wiseman, Oct 07 2023

Extensions

Name edited by Gus Wiseman, Oct 10 2023
a(0)=1 prepended by Alois P. Heinz, Feb 09 2024

A301855 Number of divisors d|n such that no other divisor of n has the same Heinz weight A056239(d).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 4, 6, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 4, 7, 4, 8, 2, 6, 4, 6, 2, 4, 2, 4, 6, 6, 4, 8, 2, 6, 5, 4, 2, 6, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 4, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Examples

			The a(24) = 4 special divisors are 1, 2, 12, 24.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Total],Length[#]===1&];
    Table[Length[uqsubs[primeMS[n]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A301855(n) = if(1==n,n,my(m=Map(),w,s); fordiv(n,d,w = A056239(d); if(!mapisdefined(m, w, &s), mapput(m,w,Set([d])), mapput(m,w,setunion(Set([d]),s)))); sumdiv(n,d,(1==length(mapget(m,A056239(d)))))); \\ Antti Karttunen, Jul 01 2018

Extensions

More terms from Antti Karttunen, Jul 01 2018

A301900 Heinz numbers of strict non-knapsack partitions. Squarefree numbers such that more than one divisor has the same Heinz weight A056239(d).

Original entry on oeis.org

30, 70, 154, 165, 210, 273, 286, 330, 390, 442, 462, 510, 546, 561, 570, 595, 646, 690, 714, 741, 770, 858, 870, 874, 910, 930, 1045, 1110, 1122, 1155, 1173, 1190, 1230, 1254, 1290, 1326, 1330, 1334, 1365, 1410, 1430, 1482, 1495, 1590, 1610, 1653, 1770
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of strict non-knapsack partitions begins: (321), (431), (541), (532), (4321), (642), (651), (5321), (6321), (761), (5421), (7321), (6421), (752), (8321), (743), (871), (9321), (7421), (862), (5431), (6521).
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    Select[Range[1000],SquareFreeQ[#]&&!UnsameQ@@wt/@Divisors[#]&]

Formula

Complement of A005117 in A299702.

A357485 Heinz numbers of integer partitions with the same length as reverse-alternating sum.

Original entry on oeis.org

1, 2, 20, 42, 45, 105, 110, 125, 176, 182, 231, 245, 312, 374, 396, 429, 494, 605, 663, 680, 702, 780, 782, 845, 891, 969, 1064, 1088, 1100, 1102, 1311, 1426, 1428, 1445, 1530, 1755, 1805, 1820, 1824, 1950, 2001, 2024, 2146, 2156, 2394, 2448, 2475, 2508, 2542
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^i y_i.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
    20: {1,1,3}
    42: {1,2,4}
    45: {2,2,3}
   105: {2,3,4}
   110: {1,3,5}
   125: {3,3,3}
   176: {1,1,1,1,5}
   182: {1,4,6}
   231: {2,4,5}
   245: {3,4,4}
   312: {1,1,1,2,6}
   374: {1,5,7}
   396: {1,1,2,2,5}
		

Crossrefs

The version for compositions is A357184, counted by A357182.
These partitions are counted by A357189.
For absolute value we have A357486, counted by A357487.
A000041 counts partitions, strict A000009.
A000712 up to 0's counts partitions w sum = twice alt sum, ranked A349159.
A001055 counts partitions with product equal to sum, ranked by A301987.
A006330 up to 0's counts partitions w sum = twice rev-alt sum, rank A349160.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],PrimeOmega[#]==ats[primeMS[#]]&]

A000710 Number of partitions of n, with two kinds of 1, 2, 3 and 4.

Original entry on oeis.org

1, 2, 5, 10, 20, 35, 62, 102, 167, 262, 407, 614, 919, 1345, 1952, 2788, 3950, 5524, 7671, 10540, 14388, 19470, 26190, 34968, 46439, 61275, 80455, 105047, 136541, 176593, 227460, 291673, 372605, 474085, 601105, 759380, 956249, 1200143, 1501749, 1873407
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of 2*n+4 with exactly 4 odd parts. - Vladeta Jovovic, Jan 12 2005
Convolution of A000041 and A001400. - Vaclav Kotesovec, Aug 18 2015
Also the sum of binomial (D(p), 4) over partitions p of n+10, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

Examples

			a(2) = 5 because we have 2, 2', 1+1, 1+1', 1'+1'.
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000712.
Fifth column of Riordan triangle A008951 and of triangle A103923.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,2,1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[If[#<5, 2, 1]&]; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3)(1-x^4))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@4], {n,0,39}] (* Robert Price, Jul 28 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 10, 4];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

Euler transform of 2 2 2 2 1 1 1...
G.f.: 1/((1-x)(1-x^2)(1-x^3)(1-x^4)*Product_{k>=1} (1-x^k)).
a(n) = Sum_{j=0..floor(n/4)} A000098(n-4*j), n >= 0.
a(n) ~ sqrt(3)*n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Aug 18 2015

Extensions

Edited by Emeric Deutsch, Mar 22 2005

A300788 Number of strict integer partitions of n in which the even parts appear as often at even positions as at odd positions.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 23, 26, 30, 35, 42, 47, 54, 62, 73, 82, 94, 107, 124, 139, 158, 179, 206, 230, 260, 293, 334, 372, 420, 470, 532, 591, 664, 740, 835, 924, 1034, 1148, 1288, 1422, 1588, 1756, 1962, 2161, 2404
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2018

Keywords

Examples

			The a(9) = 3 strict partitions: (9), (621), (531). Missing are: (81), (72), (63), (54), (432).
		

Crossrefs

Programs

  • Mathematica
    cobal[y_]:=Sum[(-1)^x,{x,Join@@Position[y,_?EvenQ]}];
    Table[Length[Select[IntegerPartitions[n],cobal[#]===0&&UnsameQ@@#&]],{n,0,40}]

Extensions

a(41)-a(58) from Alois P. Heinz, Mar 13 2018

A348614 Numbers k such that the k-th composition in standard order has sum equal to twice its alternating sum.

Original entry on oeis.org

0, 9, 11, 14, 130, 133, 135, 138, 141, 143, 148, 153, 155, 158, 168, 177, 179, 182, 188, 208, 225, 227, 230, 236, 248, 2052, 2057, 2059, 2062, 2066, 2069, 2071, 2074, 2077, 2079, 2084, 2089, 2091, 2094, 2098, 2101, 2103, 2106, 2109, 2111, 2120, 2129, 2131
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms together with their binary indices begin:
    0: ()
    9: (3,1)
   11: (2,1,1)
   14: (1,1,2)
  130: (6,2)
  133: (5,2,1)
  135: (5,1,1,1)
  138: (4,2,2)
  141: (4,1,2,1)
  143: (4,1,1,1,1)
  148: (3,2,3)
  153: (3,1,3,1)
  155: (3,1,2,1,1)
  158: (3,1,1,1,2)
		

Crossrefs

The unordered case (partitions) is counted by A000712, reverse A006330.
These compositions are counted by A262977.
Except for 0, a subset of A345917 (which is itself a subset of A345913).
A000346 = even-length compositions with alt sum != 0, complement A001700.
A011782 counts compositions.
A025047 counts wiggly compositions, ranked by A345167.
A034871 counts compositions of 2n with alternating sum 2k.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
A345197 counts compositions by length and alternating sum.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Total[stc[#]]==2*ats[stc[#]]&]
Previous Showing 41-50 of 189 results. Next