A323100
Square array read by ascending antidiagonals: T(p,q) is the number of bases e such that e^2 = -1 in Clifford algebra Cl(p,q)(R).
Original entry on oeis.org
0, 0, 1, 1, 1, 3, 4, 2, 4, 6, 10, 6, 6, 10, 10, 20, 16, 12, 16, 20, 16, 36, 36, 28, 28, 36, 36, 28, 64, 72, 64, 56, 64, 72, 64, 56, 120, 136, 136, 120, 120, 136, 136, 120, 120, 240, 256, 272, 256, 240, 256, 272, 256, 240, 256, 496, 496, 528, 528, 496, 496, 528, 528, 496, 496, 528
Offset: 0
Table begins
p\q| 0 1 2 3 4 5 ...
---+-------------------------------
0 | 0, 1, 3, 6, 10, 16, ...
1 | 0, 1, 4, 10, 20, 36, ...
2 | 1, 2, 6, 16, 36, 72, ...
3 | 4, 6, 12, 28, 64, 136, ...
4 | 10, 16, 28, 56, 120, 256, ...
5 | 20, 36, 64, 120, 240, 496, ...
...
Example for T(1,3) = 10: (Start)
1^2 = 1;
(e_1)^2 = 1;
(e_2)^2 = -1;
(e_3)^2 = -1;
(e_4)^2 = -1;
((e_1)*(e_2))^2 = -(e_1)^2*(e_2)^2 = 1;
((e_1)*(e_3))^2 = -(e_1)^2*(e_3)^2 = 1;
((e_1)*(e_4))^2 = -(e_1)^2*(e_4)^2 = 1;
((e_2)*(e_3))^2 = -(e_2)^2*(e_3)^2 = -1;
((e_2)*(e_4))^2 = -(e_2)^2*(e_4)^2 = -1;
((e_3)*(e_4))^2 = -(e_3)^2*(e_4)^2 = -1;
((e_1)*(e_2)*(e_3))^2 = -(e_1)^2*(e_2)^2*(e_3)^2 = -1;
((e_1)*(e_2)*(e_4))^2 = -(e_1)^2*(e_2)^2*(e_4)^2 = -1;
((e_1)*(e_3)*(e_4))^2 = -(e_1)^2*(e_3)^2*(e_4)^2 = -1;
((e_2)*(e_3)*(e_4))^2 = -(e_2)^2*(e_3)^2*(e_4)^2 = 1;
((e_1)*(e_2)*(e_3)*(e_4))^2 = (e_1)^2*(e_2)^2*(e_3)^2*(e_4)^2 = -1. (End)
From _Peter Luschny_, Jan 13 2019: (Start)
The first few lines of the triangle T(i-j,j) are:
[0] 0;
[1] 0, 1;
[2] 1, 1, 3;
[3] 4, 2, 4, 6;
[4] 10, 6, 6, 10, 10;
[5] 20, 16, 12, 16, 20, 16;
[6] 36, 36, 28, 28, 36, 36, 28;
[7] 64, 72, 64, 56, 64, 72, 64, 56;
[8] 120, 136, 136, 120, 120, 136, 136, 120, 120;
[9] 240, 256, 272, 256, 240, 256, 272, 256, 240, 256; (End)
A323346 is the complement sequence.
-
s := sqrt(2): h := n -> [ 0, -s, -2, -s, 0, s, 2, s][1 + modp(n+1, 8)]:
T := proc(n, k) option remember;
if n = 0 then return 2^(k - 1) + 2^((k - 3)/2)*h(k + 2) fi;
if k = 0 then return 2^(n - 1) + 2^((n - 3)/2)*h(n) fi;
T(n, k-1 ) + T(n-1, k) end:
for n from 0 to 9 do seq(T(n, k), k=0..9) od; # Peter Luschny, Jan 12 2019
-
T[n_, k_] := Sum[Binomial[n, i] Binomial[k, j] Mod[Binomial[i - j, 2], 2], {i, 0, n}, {j, 0, k}];
Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 19 2019 *)
-
T(p,q) = sum(i=0, p, sum(j=0, q, binomial(p, i)*binomial(q, j)*(binomial(i-j, 2)%2)))
A100216
Relates row sums of Pascal's triangle to expansion of cos(x)/exp(x).
Original entry on oeis.org
1, 4, 9, 16, 26, 44, 84, 176, 376, 784, 1584, 3136, 6176, 12224, 24384, 48896, 98176, 196864, 393984, 787456, 1573376, 3144704, 6288384, 12578816, 25163776, 50335744, 100675584, 201342976, 402661376, 805289984, 1610563584, 3221159936
Offset: 0
a(2) = 9 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^3 =
1'j + 1'k + 1j' + 1k' + 3'ii' + 2'jj' + 2'kk' + 1'jk' + 1'kj' + 1e
and the sum of the coefficients belonging to basis vectors which squared give the unit e (excluding e itself) is 3+2+2+1+1 = 9 (see comment).
-
[n le 3 select n^2 else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3): n in [1..40]]; // G. C. Greubel, Mar 28 2024
-
a:= n-> (<<0|1|0>, <0|0|1>, <4|-6|4>>^n. <<1, 4, 9>>)[1, 1]:
seq(a(n), n=0..35); # Alois P. Heinz, Nov 07 2013
-
d = 4; nmax = 31; a[n_ /; n < d] := (n + 1)^2; seq = Table[a[n], {n, 0, nmax}]; seq /. Solve[ Thread[ Take[seq, nmax - d + 1] == Differences[seq, d]]] // First (* Jean-François Alcover, Nov 07 2013 *)
LinearRecurrence[{4,-6,4}, {1,4,9}, 41] (* G. C. Greubel, Mar 28 2024 *)
-
@CachedFunction
def a(n): # a = A100216
if n<3: return (n+1)^2
else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Mar 28 2024
Original entry on oeis.org
-5, -1, -2, -4, -8, -16, -32, -64, -128, -256, -512, -1024, -2048, -4096, -8192, -16384, -32768, -65536, -131072, -262144, -524288, -1048576, -2097152, -4194304, -8388608, -16777216, -33554432, -67108864, -134217728, -268435456, -536870912, -1073741824
Offset: 0
A290993
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^6.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252, 5791193143
Offset: 0
-
a:=[0,0,0,0,1];; for n in [6..35] do a[n]:=6*a[n-1]-15*a[n-2]+20*a[n-3]-15*a[n-4]+6*a[n-5]; od; Concatenation([0],a); # Muniru A Asiru, Oct 23 2018
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0] cat Coefficients(R!( x^5/((1-x)^6 - x^6) )); // G. C. Greubel, Apr 11 2023
-
seq(coeff(series(x^5/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
-
z = 60; s = x/(1 - x); p = 1 - s^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290993 *)
-
concat(vector(5), Vec(x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)) + O(x^50))) \\ Colin Barker, Aug 24 2017
-
def A290993_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^5/((1-x)^6 - x^6) ).list()
A290993_list(60) # G. C. Greubel, Apr 11 2023
A290994
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^7.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975
Offset: 0
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
-
z = 60; s = x/(1 - x); p = 1 - s^7;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290994 *)
-
concat(vector(6), Vec(x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
def A290994_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^6/((1-x)^7 - x^7) ).list()
A290994_list(60) # G. C. Greubel, Apr 11 2023
Original entry on oeis.org
0, 0, 1, -2, 5, -11, 23, -48, 102, -220, 476, -1024, 2184, -4624, 9744, -20480, 42976, -90048, 188352, -393216, 819328, -1704192, 3539200, -7340032, 15203840, -31456256, 65010688, -134217728, 276826112, -570429440, 1174409216
Offset: 0
-
a:=[-2,5,-11,23];; for n in [5..30] do a[n]:=-6*a[n-1]+-14*a[n-2] -16*a[n-3]-8*a[n-4]; od; Concatenation([0,0,1], a); # G. C. Greubel, Mar 24 2019
-
I:=[-2,5,-11,23]; [0,0,1] cat [n le 4 select I[n] else -6*Self(n-1) - 14*Self(n-2)-16*Self(n-3)-8*Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 24 2019
-
gf = x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2); CoefficientList[Series[gf, {x, 0, 30}], x] (* Jean-François Alcover, Dec 16 2014, after R. J. Mathar *)
Join[{0, 0, 1}, LinearRecurrence[{-6,-14,-16,-8}, {-2,5,-11,23}, 30]] (* Jean-François Alcover, Feb 15 2016 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(x^2*(1+x)*(1+3*x+4*x^2+3*x^3 )/((1+2*x +2*x^2)*(1+2*x)^2))) \\ G. C. Greubel, Mar 24 2019
-
(x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2 )).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 24 2019
A220755
Numbers n such that n^2 + n(n+1)/2 is an oblong number (A002378).
Original entry on oeis.org
0, 1, 28, 117, 2760, 11481, 270468, 1125037, 26503120, 110242161, 2597035308, 10802606757, 254482957080, 1058545220041, 24936732758548, 103726628957277, 2443545327380640, 10164151092593121, 239442505350544188, 995983080445168597, 23462921979025949800
Offset: 1
Cf.
A011916 (numbers n>=0 such that n^2 + n(n+1)/2 is a triangular number).
Cf.
A220186 (numbers n>=0 such that n^2 + n(n+1)/2 is a square).
Cf.
A220185 (numbers n>=0 such that n^2 + n(n+1) is an oblong number).
-
#include
typedef unsigned long long U64;
U64 rootPronic(U64 a) {
U64 sr = 1L<<31, s, b;
while (a < sr*(sr+1)) sr>>=1;
for (b = sr>>1; b; b>>=1) {
s = sr+b;
if (a >= s*(s+1)) sr = s;
}
return sr;
}
int main() {
U64 a, n, r, t;
for (n=0; n < 3L<<30; n++) {
a = n*(n+1)/2 + n*n;
t = rootPronic(a);
if (a == t*(t+1)) {
printf("%llu\n", n);
}
}
}
-
LinearRecurrence[{1, 98, -98, -1, 1}, {0, 1, 28, 117, 2760}, 30] (* Giovanni Resta, Apr 14 2013 *)
CoefficientList[Series[x (1 + 27 x - 9 x^2 - 3 x^3)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 13 2014 *)
-
makelist(expand(((-(-1)^n+sqrt(6))*(5+2*sqrt(6))^(n-1)-((-1)^n+sqrt(6))*(5-2*sqrt(6))^(n-1)-2)/12), n, 1, 25); /* Bruno Berselli, Apr 14 2013 */
-
concat([0], Vec( x * (1+27*x-9*x^2-3*x^3) / ( (1-x)*(1-10*x+x^2)*(1+10*x+x^2) ) + O(x^66) ) ) /* Joerg Arndt, Apr 14 2013 */
A085476
Periodic Pascal array, read by upward antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 5, 6, 1, 2, 1, 1, 1, 6, 10, 4, 1, 1, 1, 1, 1, 7, 15, 10, 1, 3, 1, 1, 1, 1, 8, 21, 20, 5, 1, 3, 2, 1, 1, 1, 9, 28, 35, 15, 1, 4, 1, 1, 1, 1, 1, 10, 36, 56, 35, 6, 1, 6, 1, 1, 1, 1
Offset: 0
Rows begin:
n\k | 0 1 2 3 4 5
----+------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 ...
2 | 1 2 1 1 2 1 ...
3 | 1 3 3 1 1 3 ...
4 | 1 4 6 4 1 1 ...
A135360
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) for n > 4, with first terms 1, 2, 4, 7.
Original entry on oeis.org
1, 2, 4, 7, 12, 22, 44, 92, 192, 392, 784, 1552, 3072, 6112, 12224, 24512, 49152, 98432, 196864, 393472, 786432, 1572352, 3144704, 6290432, 12582912, 25167872, 50335744, 100667392, 201326592, 402644992, 805289984, 1610596352, 3221225472, 6442483712, 12884967424
Offset: 0
-
Join[{1}, LinearRecurrence[{4, -6, 4}, {2, 4, 7}, 25]] (* G. C. Greubel, Oct 11 2016 *)
-
lista(nn) = {v = vector(nn); v[1] = 1; v[2] = 2; v[3] = 4; v[4] = 7; for (k=5, nn, v[k] = 4*v[k-1]-6*v[k-2]+4*v[k-3];); v;} \\ Michel Marcus, May 06 2015
A132152
a(4n+k) = 4a(4n+k-1)-6a(4n+k-2)+4a(4n+k-3), for k = 0,1,2; 2*a(4n+3) = 7a(4n+2)-8(4n+1)+2a(4n), with a(0) = a(1) = a(2) = 0, a(3) = 1.
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 20, 34, 56, 100, 200, 356, 624, 1160, 2320, 4104, 7136, 13200, 26400, 46736, 81344, 150560, 301120, 533024, 927616, 1716800, 3433600, 6078016, 10577664, 19576960, 39153920, 69308544, 120618496, 223238400
Offset: 0
Cf.
A000749 (0, 0, 0, 1, 4, 10, 20, 36) for which a(n)=4a(n-1)-6a(n-2)+4a(n-3).
-
Join[{0},LinearRecurrence[{0,0,0,10,0,0,0,16},{0,0,1,4,10,20,34,56},40]] (* Harvey P. Dale, Nov 03 2013 *)
Definition corrected and the sequence extended by
R. J. Mathar, Feb 07 2009
Comments