cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 1164 results. Next

A099817 Bisection of A000796 (decimal expansion of Pi).

Original entry on oeis.org

1, 1, 9, 6, 3, 8, 7, 3, 3, 4, 2, 4, 3, 3, 7, 5, 2, 8, 1, 7, 6, 3, 9, 7, 1, 5, 2, 9, 4, 4, 5, 2, 0, 8, 6, 0, 2, 6, 0, 9, 8, 2, 0, 4, 2, 3, 2, 1, 0, 7, 8, 1, 8, 8, 5, 3, 8, 3, 6, 4, 0, 3, 4, 6, 9, 5, 5, 2, 3, 7, 5, 5, 4, 8, 2, 4, 1, 1, 4, 0, 8, 1, 2, 0, 9, 8, 2, 1, 5, 5, 6, 4, 2, 9, 8, 5, 9, 0, 8, 9, 4, 2, 8, 0, 7
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[Pi,10,230][[1]],{2,-1,2}] (* Harvey P. Dale, Aug 11 2024 *)

Extensions

More terms from Joshua Zucker, May 15 2006

A175792 a(n) = Sum_{k=1..n} (-1)^A000796(k), excess of the number of even over odd digits in the first n digits of Pi.

Original entry on oeis.org

-1, -2, -1, -2, -3, -4, -3, -2, -3, -4, -5, -4, -5, -6, -7, -8, -7, -8, -7, -6, -5, -4, -3, -2, -3, -4, -3, -4, -3, -4, -5, -6, -5, -4, -3, -2, -1, -2, -3, -4, -5, -4, -5, -6, -7, -8, -9, -10, -11, -12, -11, -12, -11, -10, -9, -10, -11, -10, -11, -10, -9, -10, -11, -10
Offset: 1

Views

Author

Michel Lagneau, Sep 06 2010

Keywords

Examples

			a(6) = (-1)^3 + (-1)^1 + (-1)^4 + (-1)^1 + (-1)^5 + (-1)^9= -4.
		

Crossrefs

cf. A000796, A030657, A196686 (negated), A175813 (indices of 0's).

Programs

  • Maple
    Digits := 100:
    A000796 := proc(n)
            floor(Pi*10^(n-1)) mod 10;
    end proc:
    A175792 := proc(n)
            add((-1)^A000796(k),k=1..n) ;
    end proc: # R. J. Mathar, Jul 10 2012
  • Mathematica
    Rest@ FoldList[ Plus, 0, (-1)^First@ RealDigits[Pi, 10, 200]]
    Accumulate[Table[If[EvenQ[n],1,-1],{n,RealDigits[Pi,10,70][[1]]}]] (* Harvey P. Dale, Nov 03 2015 *)

A387193 Decimal expansion of the absolute value of J_0(Pi), Bessel Function of the first kind of index 0 at A000796.

Original entry on oeis.org

3, 0, 4, 2, 4, 2, 1, 7, 7, 6, 4, 4, 0, 9, 3, 8, 6, 4, 2, 0, 2, 0, 3, 4, 9, 1, 2, 8, 1, 7, 7, 0, 4, 9, 2, 3, 9, 6, 9, 6, 5, 0, 5, 3, 4, 7, 8, 3, 8, 9, 1, 0, 0, 3, 2, 3, 8, 2, 1, 2, 3, 4, 9, 9, 5, 8, 1, 0, 9, 4, 6, 6, 3, 2, 1, 4, 7, 5, 4, 9, 3, 4, 9, 0, 3, 7, 3, 9, 6, 4, 4, 8, 7, 3, 4, 5, 2, 3, 8, 5, 7, 1, 7, 4, 1, 7, 8, 1, 7, 0, 6, 0, 6, 9, 3, 3, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Aug 21 2025

Keywords

Examples

			J_0(Pi) = -0.30424217764409386420203491281770492396965053..
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[BesselJ[0, Pi], 10, 100]] (* Paolo Xausa, Aug 21 2025 *)

A065253 a(n) = 10*(A064823(n)-1) + A000796(n).

Original entry on oeis.org

3, 1, 4, 11, 5, 9, 2, 6, 15, 13, 25, 8, 19, 7, 29, 23, 12, 33, 18, 14, 16, 22, 26, 24, 43, 53, 28, 63, 32, 17, 39, 35, 0, 42, 38, 48, 34, 21, 49, 27, 31, 36, 59, 73, 69, 79, 83, 37, 45, 41, 10, 55, 58, 52, 20, 89, 47, 44, 99, 54, 64, 65, 109, 62, 93, 30, 57, 68, 51, 46, 74, 40
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 26 2001

Keywords

Comments

The sequence would be a permutation of the naturals if each of the digits 0,1,..,9 occur infinitely often in the decimal expansion of Pi. "Inverse": A065254

Crossrefs

Programs

  • Haskell
    a065253 n = a065253_list !! (n-1)
    a065253_list = zipWith (+)
                   (map ((* 10) . (subtract 1)) a064823_list) a000796_list
    -- Reinhard Zumkeller, Jul 14 2013
  • Mathematica
    terms = 100; Clear[cnt]; cnt[_] = n = 0;
    Do[a[++n] = 10 (++cnt[k] - 1) + k, {k, RealDigits[Pi, 10, terms][[1]]}];
    a /@ Range[terms] (* Jean-François Alcover, Nov 15 2019 *)

A120943 Numbers n such that merging first n digits in decimal expansion of Pi (A000796) gives a squarefree composite number.

Original entry on oeis.org

3, 5, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 27, 28, 30, 31, 32, 34, 39, 40, 41, 43, 44, 45, 46, 48, 50, 51, 53, 54, 57, 58, 59, 60, 62, 63, 65, 66, 67, 69, 73, 76, 77, 80, 81, 82, 83, 84, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103, 104, 109, 111
Offset: 1

Views

Author

Zak Seidov, Aug 19 2006

Keywords

Comments

Note that the indices here differ by one from those in WIFC (World Integer Factorization Center), N = int(pi*10^(n)), by Hisanori Mishima. Therefore to H. Mishima's index add one.

Examples

			n=3: first 3 digits give 314=2*157
n=5: first 5 digits give 31415=5*61*103
n=8: 31415926=2*1901*8263
n=10: 3141592653=3*107*9786893
n=11: 31415926535=5*7*31*28954771
n=12: 314159265358=2*157079632679, etc.
		

Crossrefs

Cf. A000796 = Decimal expansion of Pi, A011545 = Decimal expansion of pi truncated to n places.
Complement of A120943 is A121865.

Programs

  • Mathematica
    (* first do *) Needs["NumberTheory`NumberTheoryFunctions`"] (* then *) p = RealDigits[Pi, 10, 100][[1]]; fQ[n_] := Block[{fd = FromDigits@ Take[p, n]}, !PrimeQ@fd && SquareFreeQ@fd]; Select[Range@81, fQ@# &] (* Robert G. Wilson v *)
    Module[{nn=120,p,c},p=RealDigits[Pi,10,nn][[1]];Select[Range[nn], CompositeQ[ c=FromDigits[Take[p,#]]]&&SquareFreeQ[c]&]] (* Harvey P. Dale, Mar 25 2015 *)

Formula

Numbers n such that A011545(n) is squarefree.

Extensions

More terms from Robert G. Wilson v, Aug 21 2006

A163579 Primes of the form floor(k*(k+1)*Pi/2), k>=0, where Pi = 3.1415.. = A000796.

Original entry on oeis.org

3, 31, 47, 113, 659, 1021, 1187, 1979, 2971, 3251, 5749, 9679, 10433, 14627, 20593, 22807, 23957, 35107, 39461, 55813, 58207, 109063, 152417, 157349, 201881, 227419, 244463, 262121, 292469, 295187, 310357, 318793, 320209, 323053, 328777, 333103
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    s=0;lst={};Do[s+=n;p=IntegerPart[s];If[PrimeQ[p],AppendTo[lst,p]],{n,0,7!,Pi}];lst
    Select[Floor[Accumulate[Range[800]]*Pi],PrimeQ] (* Harvey P. Dale, Nov 20 2018 *)
  • PARI
    for(n=1,500, m=floor(n*(n+1)*Pi/2); if(isprime(m), print1(m, ", "))) \\ G. C. Greubel, Jul 28 2017

Extensions

Definition clarified by R. J. Mathar, Sep 24 2011

A226486 First available increasing palindromes (A002113) found in the decimal expansion of Pi-3 (A000796).

Original entry on oeis.org

1, 4, 5, 9, 535, 979, 46264, 59195, 73637, 77477, 99999, 467764, 8683868, 23911932, 398989893, 559555955, 769646967, 972464279, 992868299, 21348884312, 49612121694, 450197791054, 9475082805749
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    pi = RealDigits[Pi-3, 10, 2500000][[1]]; palQ[n_] := n == Reverse[n]; mx = 0; k = 1; While[k < 1000, j = 1; While[j <= k, If[ palQ[ Take[ pi, {j, k}]], p = FromDigits[ Take[ pi, {j, k}]]; If[p > mx, mx = p; Print[p]; pi = Drop[pi, k]; k = 0; Break[]]]; j++]; k++]

A349551 Rectangular array with ten rows, read by falling antidiagonals: row k gives positions of k in the decimal expansion (A000796) of Pi.

Original entry on oeis.org

33, 51, 2, 55, 4, 7, 66, 38, 17, 1, 72, 41, 22, 10, 3, 78, 50, 29, 16, 20, 5, 86, 69, 34, 18, 24, 9, 8, 98, 95, 54, 25, 37, 11, 21, 14, 107, 96, 64, 26, 58, 32, 23, 30, 12, 117, 104, 74, 28, 60, 49, 42, 40, 19, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 17 2021

Keywords

Comments

Every positive integer occurs exactly once.
It is assumed that each digit occurs infinitely many times in A000796.

Examples

			(Base-10 digits of Pi) = (3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, ...); the position of the first 0 is 33, so the first term in row 0 is 33.
Corner:
  33, 51, 55, 66, 72, 78, 86, 98,  107,  117, 122, ... A014976
   2,  4, 38, 41, 50, 69, 95, 96,  104,  111, 139, ... A053745
   7, 17, 22, 29, 34, 54, 64, 74,   77,   84,  90, ... A053746
   1, 10, 16, 18, 25, 26, 28, 44,   47,   65,  87, ... A053747
   3, 20, 24, 37, 58, 60, 61, 71,   88,   93, 105, ... A053748
   5,  9, 11, 32, 49, 52, 62, 91,  110,  131, 132, ... A053749
   8, 21, 23, 42, 70, 73, 76, 83,   99,  109, 118, ... A053750
  14, 30, 40, 48, 57, 67, 97, 100, 121,  140, 157, ... A053751
  12, 19, 27, 35, 36, 53, 68, 75,   79,   82,  85, ... A053752
   6, 13, 15, 31, 39, 43, 45, 46,   56,   59,  63, ... A053753
		

Crossrefs

Cf. A000796, A014976, A053745-A053753, A032445 (includes column 1).

Programs

  • Mathematica
    r = RealDigits[Pi, 10, 200][[1]]
    t = Table[Flatten[Position[r, n]], {n, 0, 9}]
    TableForm[t]  (* A349551 array *)
    Flatten[Table[t[[n - k + 1, k]], {n, 10}, {k, n, 1, -1}]] (* A349551 sequence *)

A110810 Binomial transform of A000796.

Original entry on oeis.org

3, 4, 9, 19, 40, 92, 220, 513, 1142, 2436, 5031, 10164, 20272, 40258, 80230, 161458, 329211, 679921, 1417373, 2966192, 6195952, 12855389, 26402016, 53574712, 107369761, 212694661, 417192840, 812167806, 1573409607, 3041468738
Offset: 0

Views

Author

Paul Curtz, Jun 13 2007

Keywords

Programs

  • Magma
    m:=32; R:=RealField(m); a:=Intseq(Round(Pi(R)*10^m), 10); Reverse(~a); [ &+[ Binomial(i-1, k-1)*a[k]: k in [1..i] ]: i in [1..m] ]; /* Klaus Brockhaus, Jun 15 2007 */

Extensions

Edited by N. J. A. Sloane, Jun 15 2007
More terms from Klaus Brockhaus, Jun 15 2007

A133213 Prime partial sums of digits of decimal expansion of pi (A000796).

Original entry on oeis.org

3, 23, 31, 61, 97, 103, 157, 173, 241, 271, 313, 421, 433, 443, 449, 491, 503, 503, 523, 541, 541, 547, 557, 607, 617, 617, 647, 673, 673, 733, 757, 773, 787, 811, 821, 823, 887, 907, 911, 929, 977, 983, 991, 997, 1019, 1103, 1123, 1123, 1171, 1201, 1201
Offset: 1

Views

Author

Lekraj Beedassy, Dec 29 2007

Keywords

Comments

Prime terms of A046974.

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[First[RealDigits[N[ \[Pi],500]]]],PrimeQ] [Harvey Dale]

Extensions

Terms a(10)-a(16) added by Jason G. Wurtzel, Aug 18 2010
Further terms from Harvey P. Dale, Aug 21 2010
Previous Showing 11-20 of 1164 results. Next