cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 83 results. Next

A326882 Irregular triangle read by rows where T(n,k) is the number of finite topologies with n points and k nonempty open sets, 0 <= k <= 2^n - 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 1, 6, 9, 6, 6, 0, 1, 0, 1, 14, 43, 60, 72, 54, 54, 20, 24, 0, 12, 0, 0, 0, 1, 0, 1, 30, 165, 390, 630, 780, 955, 800, 900, 500, 660, 240, 390, 120, 190, 10, 100, 0, 60, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  1  2  1
  0  1  6  9  6  6  0  1
  0  1 14 43 60 72 54 54 20 24  0 12  0  0  0  1
Row n = 3 counts the following topologies:
{}{123} {}{1}{123}  {}{1}{12}{123} {}{1}{2}{12}{123}  {}{1}{2}{12}{13}{123}
        {}{2}{123}  {}{1}{13}{123} {}{1}{3}{13}{123}  {}{1}{2}{12}{23}{123}
        {}{3}{123}  {}{1}{23}{123} {}{2}{3}{23}{123}  {}{1}{3}{12}{13}{123}
        {}{12}{123} {}{2}{12}{123} {}{1}{12}{13}{123} {}{1}{3}{13}{23}{123}
        {}{13}{123} {}{2}{13}{123} {}{2}{12}{23}{123} {}{2}{3}{12}{23}{123}
        {}{23}{123} {}{2}{23}{123} {}{3}{13}{23}{123} {}{2}{3}{13}{23}{123}
                    {}{3}{12}{123}
                    {}{3}{13}{123}      {}{1}{2}{3}{12}{13}{23}{123}
                    {}{3}{23}{123}
		

Crossrefs

Row lengths are A000079.
Row sums are A000798.
Columns: A281774 and refs therein.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]],{k}],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4},{k,2^n}]

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 10 2019

A001929 Number of connected topologies on n labeled points.

Original entry on oeis.org

1, 1, 3, 19, 233, 4851, 158175, 7724333, 550898367, 56536880923, 8267519506789, 1709320029453719, 496139872875425839, 200807248677750187825, 112602879608997769049739, 86955243134629606109442219, 91962123875462441868790125305, 132524871920295877733718959290203, 259048612476248175744581063815546423
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
    max = Length[A001035]-1;
    B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
    A[x_] = 1 + Log[B[x]];
    A001927 = CoefficientList[ A[x] + O[x]^(max-1), x]*Range[0, max-2]!;
    a[n_] := Sum[StirlingS2[n, k] *A001927[[k+1]], {k, 0, n}];
    Table[a[n], {n, 0, max -2}] (* Jean-François Alcover, Aug 30 2018, after Vladeta Jovovic *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A001927(k). - Vladeta Jovovic, Apr 10 2006

Extensions

More terms from Vladeta Jovovic, Apr 10 2006
a(17)-a(18) using data from A001035 from Alois P. Heinz, Aug 30 2018

A006057 Number of topologies on n labeled points satisfying axioms T_0-T_4.

Original entry on oeis.org

1, 1, 3, 16, 137, 1826, 37777, 1214256, 60075185, 4484316358, 493489876721, 78456654767756, 17735173202222665, 5630684018989523274, 2486496790249207981169, 1515191575312017416011456
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Formula

E.g.f.: A04(x)=exp(Z04(x)-1) where Z04(x) denotes the E.g.f. for A006059. - Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
More precise definition from N. J. A. Sloane, Jan 09 2014

A326881 Number of set-systems with {} that are closed under intersection and cover n vertices.

Original entry on oeis.org

1, 1, 5, 71, 4223, 2725521, 151914530499, 28175294344381108057
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			The a(2) = 5 set-systems:
  {{},{1,2}}
  {{},{1},{2}}
  {{},{1},{1,2}}
  {{},{2},{1,2}}
  {{},{1},{2},{1,2}}
		

Crossrefs

The case also closed under union is A000798.
The connected case (i.e., with maximum) is A102894.
The same for union instead of intersection is (also) A102894.
The non-covering case is A102895.
The BII-numbers of these set-systems (without the empty set) are A326880.
The unlabeled case is A326883.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A102895. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 10 2019

A121337 Number of idempotent relations on n labeled elements.

Original entry on oeis.org

1, 2, 11, 123, 2360, 73023, 3465357
Offset: 0

Views

Author

Florian Kammüller (flokam(AT)cs.tu-berlin.de), Aug 28 2006

Keywords

Comments

A relation r is idempotent if r ; r = r, where ; denotes sequential composition.
From Geoffrey Critzer, Oct 18 2023 : (Start)
a(n) is also the number of maximal subgroups in the semigroup of binary relations on [n]. See Butler and Markowski link.
A binary relation is idempotent iff it is both dense (A355730) and transitive (A006905).
A binary relation is idempotent iff it is both limit dominating (A366194) and limit dominated (A366722). See Gregory, Kirkland, and Pullman link.
A binary relation R on [n] is idempotent iff the following biconditional statement holds for all x,y in [n]: There is a cyclic traverse from x to y in G(R) iff (x,y) is in R. Here, G(R) is the directed graph with self loops allowed (A002416) corresponding to R. See Rosenblatt link.
Let Q be a quasi-order (A000798) on [n]. Let D(X) be the relation {(x,x):x is in X}. Let S be a subset of [n] such that: (i) For all x in S, the class in the equivalence relation Q intersect Q^(-1) containing (x,x) is a singleton and (ii) for all x,y in S, the component containing x is not covered by the component containing y in the condensation of G(Q) . Here, the condensation of G(Q) is the acyclic digraph (A003024) obtained from G(Q) by replacing every strongly connected component (SCC) by a single vertex and all directed edges from one SCC to another with a single directed edge. Then a relation is idempotent iff it is of the form Q-D(S). See Schein link. (End)

Examples

			a(2) = 11 because given a set {a,b} of two elements, of the 2^(2*2) = 16 relations on the set, only 5 are not idempotent. - _Michael Somos_, Jul 28 2013
These 5 relations that are not idempotent are: {(a,b)}, {(b,a)}, {(a,b),(b,a)}, {(a,b),(b,a),(b,b)}, {(a,a),(a,b),(b,a)}. - _Geoffrey Critzer_, Aug 07 2016
		

References

  • F. Kammüller, Interactive Theorem Proving in Software Engineering, Habilitationsschrift, Technische Universitaet Berlin (2006).
  • Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Decker, 1982.

Crossrefs

Cf. A000798 (labeled quasi-orders (or topologies)), A001930 (unlabeled quasi-orders), A001035 (labeled partial orders), A000112 (unlabeled partial orders), A002416, A003024, A366722, A366194, A355730, A006905.
Row sums of A360984.

Programs

  • Mathematica
    Prepend[Table[Length[Select[Tuples[Tuples[{0, 1}, n], n], (MatrixPower[#, 2] /. x_ /; x > 0 -> 1) == # &]], {n, 1, 4}], 1] (* Geoffrey Critzer, Aug 07 2016 *)

Extensions

Offset corrected by James Mitchell, Jul 28 2013
a(1) corrected by Philippe Beaudoin, Aug 11 2015

A000608 Number of connected partially ordered sets with n unlabeled elements.

Original entry on oeis.org

1, 1, 1, 3, 10, 44, 238, 1650, 14512, 163341, 2360719, 43944974, 1055019099, 32664984238, 1303143553205, 66900392672168, 4413439778321689
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • G. Melançon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Euler transform of A000112.
Cf. A263864 (multiset transform), A342500 (refined by rank).

Programs

Extensions

More terms from Christian G. Bower, who pointed out connection with A000112, Jan 21 1998 and Dec 12 2001
More terms from Vladeta Jovovic, Jan 04 2006; corrected Jan 15 2006

A001833 Number of labeled graded partially ordered sets with n elements.

Original entry on oeis.org

1, 1, 3, 19, 219, 3991, 106623, 3964339, 199515459, 13399883551, 1197639892983, 143076298623259, 23053861370437659, 5062745845287855271, 1530139311543346178223, 641441466132460086890179, 375107113287994040621904819, 307244526491924695346004951151, 353511145615118063468292270299943
Offset: 0

Views

Author

Keywords

Comments

Here "graded" means that there exists a rank function rk from the poset to the integers such that whenever v covers w in the poset, we have rk(v) = rk(w) + 1. Note that this notion of grading is weaker than in sequence A006860, which counts posets in which all maximal chains have the same length.

Examples

			The poset on {a, b, c, d, e} defined by the relations a < b < c and d < e is counted by this sequence. (For example, one associated rank function is rk(a) = rk(d) = 0, rk(b) = rk(e) = 1 and rk(c) = 2.) However, the poset defined by the relations a < b < c and a < d < e < c is not graded and so not counted by this sequence.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A361951.
Graded posets with no chain of length 3 are counted by A001831.
Cf. A223911, A228551, A361920 (unlabeled version).

Programs

  • PARI
    \\ C(n) is defined in A361951.
    seq(n)={my(c=C(n)); Vec(serlaplace(c[n+1]/c[n]))} \\ Andrew Howroyd, Mar 31 2023

Extensions

Corrected and edited by Joel B. Lewis, Mar 28 2011
a(7)-a(15) from Daniele P. Morelli, Aug 25 2013
a(16)-a(18) from Sean A. Irvine, Sep 25 2015

A006056 Number of topologies on n labeled points satisfying the T_4 axiom.

Original entry on oeis.org

1, 1, 4, 26, 255, 3642, 75606, 2316169, 106289210, 7321773414, 748425136289, 111576624613588, 23864968806932886, 7225895692327786931, 3064182503223082011556, 1803904252801640389374494, 1463405916763710662849541695, 1625522872429294851288338156654
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Formula

E.g.f.: A4(X) = exp(Z4(X)-1) where Z4(x) denotes the e.g.f. for A006058. - Herman Jamke, Mar 02 2008

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
More precise definition from N. J. A. Sloane, Jan 09 2014

A006059 Number of connected labeled T_0-T_4-topologies with n points.

Original entry on oeis.org

1, 1, 2, 9, 76, 1095, 25386, 910161, 49038872, 3885510411, 445110425110, 72721717736613, 16755380125270788, 5393244363726095487, 2405910197342218830914, 1477264863856923105482745, 1241074736327051013648799024, 1419169006353332682835352361843
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

Formula

a(n) = n*A001035(n-1) for n>=1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008

Extensions

More terms from Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2001

A006455 Number of partial orders on {1,2,...,n} that are contained in the usual linear order (i.e., xRy => x

Original entry on oeis.org

1, 1, 2, 7, 40, 357, 4824, 96428, 2800472, 116473461, 6855780268, 565505147444, 64824245807684
Offset: 0

Views

Author

Keywords

Comments

Also known as naturally labeled posets. - David Bevan, Nov 16 2023
Also the number of n X n upper triangular Boolean matrices B with all diagonal entries 1 such that B = B^2.
The asymptotic values derived by Brightwell et al. are relevant only for extremely large values of n. The average number of linear extensions (topological sorts) of a random partial order on {1,...,n} is n! S_n / N_n, where S_n is this sequence and N_n is sequence A001035

Examples

			a(3) = 7: {}, {1R2}, {1R3}, {2R3}, {1R2, 1R3}, {1R3, 2R3}, {1R2, 1R3, 2R3}.
		

References

  • N. B. Hindman, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

E.g.f.: exp(S(x)-1) where S(x)is the e.g.f. for A323502. - Ludovic Schwob, Mar 29 2024

Extensions

Additional comments and more terms from Don Knuth, Dec 03 2001
Previous Showing 21-30 of 83 results. Next