cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 265 results. Next

A332004 Number of compositions (ordered partitions) of n into distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 8, 12, 16, 24, 52, 64, 88, 132, 180, 344, 416, 616, 816, 1176, 1496, 2736, 3232, 4756, 6176, 8756, 11172, 15576, 24120, 30460, 41456, 55740, 74440, 97976, 130192, 168408, 256464, 315972, 429888, 558192, 749920, 958264, 1274928, 1621272, 2120288, 3020256
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Comments

Moebius transform of A032020.
Ranking these compositions using standard compositions (A066099) gives the intersection of A233564 (strict) with A291166 (relatively prime). - Gus Wiseman, Oct 18 2020

Examples

			a(6) = 8 because we have [5, 1], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 5], [1, 3, 2] and [1, 2, 3].
From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(8) = 16 compositions (empty column indicated by dot):
  (1)  .  (1,2)  (1,3)  (1,4)  (1,5)    (1,6)    (1,7)
          (2,1)  (3,1)  (2,3)  (5,1)    (2,5)    (3,5)
                        (3,2)  (1,2,3)  (3,4)    (5,3)
                        (4,1)  (1,3,2)  (4,3)    (7,1)
                               (2,1,3)  (5,2)    (1,2,5)
                               (2,3,1)  (6,1)    (1,3,4)
                               (3,1,2)  (1,2,4)  (1,4,3)
                               (3,2,1)  (1,4,2)  (1,5,2)
                                        (2,1,4)  (2,1,5)
                                        (2,4,1)  (2,5,1)
                                        (4,1,2)  (3,1,4)
                                        (4,2,1)  (3,4,1)
                                                 (4,1,3)
                                                 (4,3,1)
                                                 (5,1,2)
                                                 (5,2,1)
(End)
		

Crossrefs

A000740 is the non-strict version.
A078374 is the unordered version (non-strict: A000837).
A101271*6 counts these compositions of length 3 (non-strict: A000741).
A337561/A337562 is the pairwise coprime instead of relatively prime version (non-strict: A337462/A101268).
A289509 gives the Heinz numbers of relatively prime partitions.
A333227/A335235 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&GCD@@#<=1&]],{n,0,15}] (* Gus Wiseman, Oct 18 2020 *)

A337601 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 7, 10, 7, 11, 11, 17, 12, 19, 12, 19, 17, 29, 16, 28, 19, 31, 23, 46, 23, 42, 25, 45, 27, 59, 31, 57, 34, 61, 37, 84, 38, 75, 42, 74, 47, 107, 45, 98, 51, 96, 56, 135, 54, 115, 63, 117, 67, 174, 65, 139, 75, 144, 75, 194
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337600 at a(9) = 4, A337600(9) = 5.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  321  322  332  441  433  443  543  544  554
            311  411  331  431  522  532  533  552  553  743
                      511  521  531  541  551  651  661  752
                           611  711  721  722  732  733  761
                                     811  731  741  751  833
                                          911  831  922  851
                                               921  B11  941
                                               A11       A31
                                                         B21
                                                         C11
		

Crossrefs

A014612 intersected with A304711 ranks these partitions.
A220377 is the strict case.
A304709 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337600 considers singletons to be coprime.
A337603 is the ordered version.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337600(n) - A079978(n).

A355393 Number of integer partitions of n such that, for all parts x of multiplicity 1, either x - 1 or x + 1 is also a part.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 6, 7, 10, 14, 17, 23, 32, 39, 51, 67, 83, 105, 134, 165, 206, 256, 312, 385, 475, 573, 697, 849, 1021, 1231, 1483, 1771, 2121, 2534, 3007, 3575, 4245, 5008, 5914, 6979, 8198, 9626, 11292, 13201, 15430, 18010, 20960, 24389, 28346, 32855, 38066
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2022

Keywords

Comments

These are partitions without a neighborless singleton, where a part x is neighborless if neither x - 1 nor x + 1 are parts, and a singleton if it appears only once.

Examples

			The a(0) = 1 through a(8) = 10 partitions:
  ()  .  (11)  (21)   (22)    (32)     (33)      (43)       (44)
               (111)  (211)   (221)    (222)     (322)      (332)
                      (1111)  (2111)   (321)     (2221)     (2222)
                              (11111)  (2211)    (3211)     (3221)
                                       (21111)   (22111)    (3311)
                                       (111111)  (211111)   (22211)
                                                 (1111111)  (32111)
                                                            (221111)
                                                            (2111111)
                                                            (11111111)
		

Crossrefs

This is the singleton case of A355394, complement A356236.
The complement is counted by A356235.
These partitions are ranked by the complement of A356237.
The strict case is A356606, complement A356607.
A000041 counts integer partitions, strict A000009.
A000837 counts relatively prime partitions, ranked by A289509.
A007690 counts partitions with no singletons, complement A183558.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,!Or@@Table[Count[ptn,x]==1&&!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]

A356235 Number of integer partitions of n with a neighborless singleton.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 5, 8, 12, 16, 25, 33, 45, 62, 84, 109, 148, 192, 251, 325, 421, 536, 690, 870, 1100, 1385, 1739, 2161, 2697, 3334, 4121, 5071, 6228, 7609, 9303, 11308, 13732, 16629, 20101, 24206, 29140, 34957, 41882, 50060, 59745, 71124, 84598, 100365
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2022

Keywords

Comments

A part x is neighborless if neither x - 1 nor x + 1 are parts, and a singleton if it appears only once. Examples of partitions with a neighborless singleton are: (3), (3,1), (3,1,1), (3,3,1). Examples of partitions without a neighborless singleton are: (3,3,1,1), (4,3,1,1), (3,2,1), (2,1), (3,3).

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)  (3)  (4)   (5)    (6)     (7)      (8)
                 (31)  (41)   (42)    (52)     (53)
                       (311)  (51)    (61)     (62)
                              (411)   (331)    (71)
                              (3111)  (421)    (422)
                                      (511)    (431)
                                      (4111)   (521)
                                      (31111)  (611)
                                               (4211)
                                               (5111)
                                               (41111)
                                               (311111)
		

Crossrefs

The complement is counted by A355393.
This is the singleton case of A356236, complement A355394.
These partitions are ranked by A356237.
The strict case is A356607, complement A356606.
A000041 counts integer partitions, strict A000009.
A000837 counts relatively prime partitions, ranked by A289509.
A007690 counts partitions with no singletons, complement A183558.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min@@Length/@Split[Reverse[#],#1>=#2-1&]==1&]],{n,0,30}]

A356236 Number of integer partitions of n with a neighborless part.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 8, 9, 16, 20, 31, 40, 59, 76, 105, 138, 184, 238, 311, 400, 515, 656, 831, 1052, 1322, 1659, 2064, 2572, 3182, 3934, 4837, 5942, 7264, 8872, 10789, 13109, 15865, 19174, 23105, 27796, 33361, 39956, 47766, 56985, 67871, 80675, 95750, 113416
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2022

Keywords

Comments

A part x of a partition is neighborless if neither x - 1 nor x + 1 are parts.

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (41)     (33)      (52)
                    (31)    (311)    (42)      (61)
                    (1111)  (11111)  (51)      (331)
                                     (222)     (421)
                                     (411)     (511)
                                     (3111)    (4111)
                                     (111111)  (31111)
                                               (1111111)
		

Crossrefs

The complement is counted by A355394, singleton case A355393.
The singleton case is A356235, ranked by A356237.
The strict case is A356607, complement A356606.
These partitions are ranked by the complement of A356736.
A000041 counts integer partitions, strict A000009.
A000837 counts relatively prime partitions, ranked by A289509.
A007690 counts partitions with no singletons, complement A183558.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]

Formula

a(n) = A000041(n) - A355394(n).

A371177 Positive integers whose prime indices include all distinct divisors of all prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 30, 32, 34, 36, 40, 42, 44, 48, 50, 54, 60, 62, 64, 66, 68, 72, 80, 82, 84, 88, 90, 96, 100, 102, 108, 110, 118, 120, 124, 126, 128, 132, 134, 136, 144, 150, 160, 162, 164, 166, 168, 170, 176, 180, 186, 192, 198, 200
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also positive integers with as many distinct prime factors (A001221) as distinct divisors of prime indices (A370820).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   48: {1,1,1,1,2}
		

Crossrefs

The LHS is A001221, distinct case of A001222.
The RHS is A370820, for prime factors A303975.
For bigomega on the LHS we have A370802, counted by A371130.
For divisors on the LHS we have A371165, counted by A371172.
Partitions of this type are counted by A371178, strict A371128.
The complement is A371179, counted by A371132.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length.
A305148 counts partitions without divisors, strict A303362, ranks A316476.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

Formula

A001221(a(n)) = A370820(a(n)).

A319149 Number of superperiodic integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 3, 5, 1, 7, 1, 7, 3, 3, 1, 13, 2, 3, 4, 9, 1, 13, 1, 11, 3, 3, 3, 23, 1, 3, 3, 20, 1, 17, 1, 16, 9, 3, 1, 38, 2, 9, 3, 23, 1, 25, 3, 36, 3, 3, 1, 71, 1, 3, 11, 49, 3, 31, 1, 52, 3, 19
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

An integer partition is superperiodic if either it consists of a single part equal to 1 or its parts have a common divisor > 1 and its multiset of multiplicities is itself superperiodic. For example, (8,8,6,6,4,4,4,4,2,2,2,2) has multiplicities (4,4,2,2) with multiplicities (2,2) with multiplicities (2) with multiplicities (1). The first four of these partitions are periodic and the last is (1), so (8,8,6,6,4,4,4,4,2,2,2,2) is superperiodic.

Examples

			The a(24) = 11 superperiodic partitions:
  (24)
  (12,12)
  (8,8,8)
  (9,9,3,3)
  (8,8,4,4)
  (6,6,6,6)
  (10,10,2,2)
  (6,6,6,2,2,2)
  (6,6,4,4,2,2)
  (4,4,4,4,4,4)
  (4,4,4,4,2,2,2,2)
  (3,3,3,3,3,3,3,3)
  (2,2,2,2,2,2,2,2,2,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    wotperQ[m_]:=Or[m=={1},And[GCD@@m>1,wotperQ[Sort[Length/@Split[Sort[m]]]]]];
    Table[Length[Select[IntegerPartitions[n],wotperQ]],{n,30}]

A325356 Number of integer partitions of n whose augmented differences are weakly increasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 6, 5, 5, 6, 8, 6, 10, 9, 8, 10, 13, 10, 15, 14, 13, 15, 21, 15, 19, 21, 20, 25, 25, 20, 31, 30, 30, 32, 35, 28, 40, 44, 36, 42, 50, 43, 54, 53, 49, 57, 67, 58, 68, 66, 66, 78, 84, 71, 86, 92, 82, 99, 109
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325394.

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (1111111)  (53)
                                     (111111)             (332)
                                                          (2222)
                                                          (11111111)
For example, the augmented differences of (6,6,5,3) are (1,2,3,3), which are weakly increasing, so (6,6,5,3) is counted under a(20).
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A078392 Sum of GCD's of parts in all partitions of n.

Original entry on oeis.org

1, 3, 5, 9, 11, 20, 21, 35, 42, 61, 66, 112, 113, 168, 210, 279, 313, 461, 508, 719, 852, 1088, 1277, 1756, 2006, 2573, 3106, 3937, 4593, 5958, 6872, 8676, 10305, 12655, 15009, 18664, 21673, 26559, 31447, 38217, 44623, 54386, 63303, 76379, 89696, 106879
Offset: 1

Views

Author

Vladeta Jovovic, Dec 24 2002

Keywords

Comments

Equals row sums of triangle A168534. - Gary W. Adamson, Nov 28 2009

Examples

			Partitions of 4 are 1+1+1+1, 1+1+2, 2+2, 1+3, 4, the corresponding GCD's of parts are 1,1,2,1,4 and their sum is a(4) = 9.
		

Crossrefs

Cf. A000010, A000041, A168534, A181844 (the same for LCM), A319301.

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> add(phi(n/d)*numbpart(d), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 02 2015
  • Mathematica
    a[n_] := Sum[EulerPhi[n/d]*PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)

Formula

a(n) = Sum_{d|n} d * A000837(n/d).
a(n) = Sum_{d|n} phi(n/d)*numbpart(d) = Sum_{d|n} A000010(n/d)*A000041(d). - Vladeta Jovovic, May 08 2003
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} A000041(gcd(n,k)).
a(n) = Sum_{k=1..n} A000041(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)). (End)

A318728 Number of cyclic compositions (necklaces of positive integers) summing to n that have only one part or whose adjacent parts (including the last with first) are coprime.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 13, 22, 34, 58, 95, 168, 280, 492, 853, 1508, 2648, 4715, 8350, 14924, 26643, 47794, 85779, 154475, 278323, 502716, 908913, 1646206, 2984547, 5418653, 9847190, 17916001, 32625618, 59470540, 108493150, 198094483, 361965239, 661891580, 1211162271
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(7) = 13 cyclic compositions with adjacent parts coprime:
  7,
  16, 25, 34,
  115,
  1114, 1213, 1132, 1123,
  11113, 11212,
  111112,
  1111111.
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]]&]],{n,20}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, (n > 1) + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019

Formula

a(n) = A328597(n) + 1 for n > 1. - Andrew Howroyd, Oct 27 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018
Name corrected by Gus Wiseman, Nov 04 2019
Previous Showing 61-70 of 265 results. Next