A358582
Number of rooted trees with n nodes, most of which are not leaves.
Original entry on oeis.org
0, 0, 1, 1, 5, 7, 28, 48, 176, 336, 1179, 2420, 8269, 17855, 59832, 134289, 443407, 1025685, 3346702, 7933161, 25632265, 62000170, 198670299, 488801159, 1555187172, 3882403641, 12276230777, 31034921462, 97601239282, 249471619165, 780790439063, 2015194486878
Offset: 1
The a(3) = 1 through a(6) = 7 trees:
((o)) (((o))) (((oo))) ((((oo))))
((o)(o)) (((o)(o)))
((o(o))) (((o(o))))
(o((o))) ((o)((o)))
((((o)))) ((o((o))))
(o(((o))))
(((((o)))))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}][_],{0,Infinity}]&]],{n,0,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..(n-1)\2]))} \\ Andrew Howroyd, Dec 30 2022
A358585
Number of ordered rooted trees with n nodes, most of which are leaves.
Original entry on oeis.org
1, 0, 1, 1, 7, 11, 66, 127, 715, 1549, 8398, 19691, 104006, 258194, 1337220, 3467115, 17678835, 47440745, 238819350, 659060677, 3282060210, 9271024542, 45741281820, 131788178171, 644952073662, 1890110798926, 9183676536076, 27316119923002, 131873975875180, 397407983278484
Offset: 1
The a(1) = 1 through a(6) = 11 ordered trees:
o . (oo) (ooo) (oooo) (ooooo)
((o)oo) ((o)ooo)
((oo)o) ((oo)oo)
((ooo)) ((ooo)o)
(o(o)o) ((oooo))
(o(oo)) (o(o)oo)
(oo(o)) (o(oo)o)
(o(ooo))
(oo(o)o)
(oo(oo))
(ooo(o))
The opposite is the same, unordered
A358582.
A001263 counts ordered rooted trees by nodes and leaves, unordered
A055277.
A080936 counts ordered rooted trees by nodes and height, unordered
A034781.
A090181 counts ordered rooted trees by nodes and internals, unord.
A358575.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,10}]
-
a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) - if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024
A358583
Number of rooted trees with n nodes, at least half of which are leaves.
Original entry on oeis.org
1, 1, 1, 3, 4, 13, 20, 67, 110, 383, 663, 2346, 4217, 15118, 27979, 101092, 191440, 695474, 1341974, 4893067, 9589567, 35055011, 69612556, 254923825, 511987473, 1877232869, 3807503552, 13972144807, 28585315026, 104955228432, 216381073935, 794739865822
Offset: 1
The a(1) = 1 through a(6) = 13 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(oo(o)) (oo(oo))
(ooo(o))
(((ooo)))
((o)(oo))
((o(oo)))
((oo(o)))
(o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[(n-1)\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022
A010370
a(n) = binomial(2*n, n)^2 / (1-2*n).
Original entry on oeis.org
1, -4, -12, -80, -700, -7056, -77616, -906048, -11042460, -139053200, -1796567344, -23696871744, -317933029232, -4326899214400, -59605244280000, -829705000377600, -11654762427179100, -165021757273414800, -2353088020380174000, -33764531705178120000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 - 4*x - 12*x^2 - 80*x^3 - 700*x^4 - 7056*x^5 - 77616*x^6 - ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 591.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
-
seq(binomial(2*n,n)^2/(1-2*n), n=0..30); # Robert Israel, Jul 10 2017
-
CoefficientList[Series[EllipticE[16x]2/Pi, {x, 0, 20}], x]
Table[Binomial[2n,n]^2/(1-2n),{n,0,30}] (* Harvey P. Dale, Mar 07 2013 *)
-
{a(n) = binomial(2*n, n)^2 / (1 - 2*n)}; /* Michael Somos, Dec 13 2002 */
A145601
a(n) is the number of walks from (0,0) to (0,2) that remain in the upper half-plane y >= 0 using 2*n unit steps either up (U), down (D), left (L) or right (R).
Original entry on oeis.org
1, 15, 189, 2352, 29700, 382239, 5010005, 66745536, 901995588, 12342120700, 170724392916, 2384209771200, 33577620944400, 476432168185575, 6805332732133125, 97790670976838400, 1412830549632694500
Offset: 1
a(2) = 15: the 15 walks from (0,0) to (0,2) of four steps are:
UUUD, UULR, UURL, UUDU, URUL, ULUR, URLU, ULRU,RUUL, LUUR,
RLUU, LRUU, RULU, LURU and UDUU.
A145602
a(n) is the number of walks from (0,0) to (0,3) that remain in the upper half-plane y >= 0 using 2*n +1 unit steps either up (U), down (D), left (L) or right (R).
Original entry on oeis.org
1, 24, 392, 5760, 81675, 1145144, 16032016, 225059328, 3173688180, 44986664800, 641087516256, 9183622822400, 132211882468575, 1912322889603000, 27781440618420000, 405248874740582400, 5933888308457316900
Offset: 1
A145603
a(n) is the number of walks from (0,0) to (0,4) that remain in the upper half-plane y >= 0 using 2*n +2 unit steps either up (U), down (D), left (L) or right (R).
Original entry on oeis.org
1, 35, 720, 12375, 196625, 3006003, 45048640, 668144880, 9859090500, 145173803500, 2136958387520, 31479019635375, 464342770607625, 6861343701121875, 101583106970400000, 1507019252941540800
Offset: 1
A123617
Central terms of triangle A123610: a(n) = A123610(2*n,n).
Original entry on oeis.org
1, 2, 10, 68, 618, 6352, 71188, 841332, 10352618, 131328068, 1706742160, 22619741212, 304685855700, 4160480013848, 57476485976388, 802048167035968, 11290551106506218, 160168176177137896, 2287724464324213972
Offset: 0
-
T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]*Binomial[n/#, k/#]^2, 0] &];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* A123610 *)
Table[T[2*n, n], {n, 0, 50}] (* A123617 *)
Table[T[2*n + 2, n], {n, 0, 50}] (* A123618 *)
Table[T[2*n + 2,n]/(n+1), {n, 0, 50}] (* A123619 *)
(* G. C. Greubel, Oct 26 2017 *)
-
{a(n)=if(n==0,1,(1/2/n)*sumdiv(2*n,d,if(gcd(n,d)==d, eulerphi(d)*binomial(2*n/d,n/d)^2,0)))}
Original entry on oeis.org
1, 4, 39, 392, 4420, 52272, 644231, 8179600, 106376580, 1410528080, 19006875580, 259613952864, 3587352778256, 50068405195200, 704925148185495, 10001318622631200, 142866058397606500, 2053248549639210000
Offset: 0
-
T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]*Binomial[n/#, k/#]^2, 0] &];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* A123610 *)
Table[T[2*n, n], {n, 0, 50}] (* A123617 *)
Table[T[2*n + 2, n], {n, 0, 50}] (* A123618 *)
Table[T[2*n + 2,n]/(n+1), {n, 0, 50}] (* A123619 *)
(* G. C. Greubel, Oct 26 2017 *)
-
{a(n)=if(n==0,1,(1/(2*n+2))*sumdiv(2*n+2,d,if(gcd(n,d)==d, eulerphi(d)*binomial((2*n+2)/d,n/d)^2,0)))}
A248045
(2*(n-1))! * (2*n-1)! / (n * (n-1)!^3).
Original entry on oeis.org
1, 6, 120, 4200, 211680, 13970880, 1141620480, 111307996800, 12614906304000, 1629845894476800, 236475822507724800, 38072607423743692800, 6735922851893114880000, 1299070835722243584000000, 271245990498804460339200000, 60962536364606302461235200000
Offset: 1
Comments