cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A120258 Triangle of central coefficients of generalized Pascal-Narayana triangles.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 20, 20, 4, 1, 1, 70, 175, 50, 5, 1, 1, 252, 1764, 980, 105, 6, 1, 1, 924, 19404, 24696, 4116, 196, 7, 1, 1, 3432, 226512, 731808, 232848, 14112, 336, 8, 1, 1, 12870, 2760615, 24293412, 16818516, 1646568, 41580, 540, 9, 1
Offset: 0

Views

Author

Paul Barry, Jun 13 2006

Keywords

Comments

Columns are the central coefficients of the triangles T(n, k;r) with T(n, k;r)=Product{j=0..r, C(n+j, k+j)/C(n-k+j, j)}*[k<=n]; (r=0,A007318), (r=1;A001263),(r=2,A056939),(r=3,A056940),(r=4,A056941). Essentially A103905 as a number triangle with an extra diagonal of 1's. Central coefficients T(2n, n) are A008793. Row sums are A120259. Diagonal sums are A120260.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,     1;
  1,   6,     3,     1;
  1,  20,    20,     4,    1;
  1,  70,   175,    50,    5,   1;
  1, 252,  1764,   980,  105,   6, 1;
  1, 924, 19404, 24696, 4116, 196, 7, 1;
  ...
		

Crossrefs

Row sums give A120259.

Programs

  • PARI
    T(n, k) = prod(j=0, k-1, binomial(2*n-2*k+j, n-k)/binomial(n-k+j, j)); \\ Seiichi Manyama, Apr 02 2021

Formula

Number triangle T(n, k)=[k<=n]*Product{j=0..k-1, C(2n-2k+j, n-k)/C(n-k+j, j)}
As a square array, this is T(n,m)=product{k=1..m, product{j=1..n, product{i=1..n, (i+j+k-1)/(i+j+k-2)}}}; - Paul Barry, May 13 2008

A038535 Numerators of coefficients of EllipticE/Pi.

Original entry on oeis.org

1, -1, -3, -5, -175, -441, -4851, -14157, -2760615, -8690825, -112285459, -370263621, -19870814327, -67607800225, -931331941875, -3241035157725, -2913690606794775, -10313859829588425, -147068001273760875, -527570807893408125, -30451387031607516975
Offset: 0

Views

Author

Wouter Meeussen, revised Jan 03 2001

Keywords

Comments

Contribution from Wolfdieter Lang, Nov 08 2010: (Start)
a(n)/A056982(n) = -(binomial(2*n,n)^2)/((2*n-1)*2^(4*n)), n>=0, are the coefficients of x^n of hypergeometric([1/2,-1/2],[1],x).
The series hypergeometric([1/2,-1/2],[1],e^2)=L/(2*Pi*a) with L the perimeter of an ellipse with major axis a and numerical eccentricity e. (End)

Crossrefs

a(n) divides A000891(n+1).

Programs

  • Mathematica
    Numerator[CoefficientList[Series[EllipticE[m]/Pi,{m,0,25}],m]] (* Harvey P. Dale, Dec 16 2011 *)

Formula

a(n) = 2^(-2 w[n])binomial[2n, n]^2 (-1)^(2n)/(1-2n) with w[n]=A000120 = number of 1's in binary expansion of n

A123619 a(n) = A123610(2*n+2,n)/(n+1) = A123618(n)/(n+1).

Original entry on oeis.org

1, 2, 13, 98, 884, 8712, 92033, 1022450, 11819620, 141052808, 1727897780, 21634496072, 275950213712, 3576314656800, 46995009879033, 625082413914450, 8403885788094500, 114069363868845000, 1561609591376307572
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2006

Keywords

Comments

Related sequences: A123610(2n,n) = A123617(n); A123610(2n+1,n) = A000891(n); A123610(2n+2,n) = A123618(n).

Crossrefs

Cf. A123610 (triangle); A123617, A000891, A123618.

Programs

  • Mathematica
    T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]*Binomial[n/#, k/#]^2, 0] &];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* A123610 *)
    Table[T[2*n, n], {n, 0, 50}] (* A123617 *)
    Table[T[2*n + 2, n], {n, 0, 50}] (* A123618 *)
    Table[T[2*n + 2,n]/(n+1), {n, 0, 50}] (* A123619 *)
    (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    {a(n)=if(n==0,1,(1/(2*(n+1)^2))*sumdiv(2*n+2,d,if(gcd(n,d)==d, eulerphi(d)*binomial((2*n+2)/d,n/d)^2,0)))}

A333667 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through NW and SE corners ((0,0),(n-1,n-1)).

Original entry on oeis.org

1, 3, 20, 16, 6, 175, 420, 562, 456, 186, 1764, 8064, 21224, 39500, 55376, 57248, 37586, 10260, 1072, 19404, 138600, 569768, 1717152, 4151965, 8371428, 14126846, 19364732, 20241450, 14759356, 6998166, 1927724, 230440
Offset: 2

Views

Author

Seiichi Manyama, Apr 01 2020

Keywords

Examples

			T(3,0) = 3;
   +--*--*   +--*--*   +--*
   |     |   |     |   |  |
   *--*  *   *     *   *  *--*
      |  |   |     |   |     |
      *--+   *--*--+   *--*--+
Triangle starts:
=======================================================================
n\k|      0        1         2 ...      4 ...   8 ...    12 ...     18
---|-------------------------------------------------------------------
2  |      1;
3  |      3;
4  |     20,      16,        6;
5  |    175,     420,      562, ... , 186;
6  |   1764,    8064,    21224, .......... , 1072;
7  |  19404,  138600,   569768, .................. , 230440;
8  | 226512, 2265120, 12922446, ............................ , 4638576;
		

Crossrefs

Row sums give A333323.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333667(n):
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles().including(1).including(n * n)
        return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)]
    print([i for n in range(2, 8) for i in A333667(n)])

Formula

T(n,0) = A000891(n-2).

A358553 Number of internal (non-leaf) nodes in the n-th standard ordered rooted tree.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 2, 3, 2, 2, 1, 4, 2, 4, 3, 4, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 1, 3, 4, 3, 2, 5, 4, 4, 3, 3, 4, 4, 3, 4, 3, 3, 2, 4, 2, 4, 3, 4, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 1, 3, 3, 5, 4, 4, 3, 3, 2, 4, 5, 5, 4, 5, 4, 4, 3, 5, 3, 5, 4, 5, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The 89-th standard rooted tree is ((o)o(oo)), and it has 3 internal nodes, so a(89) = 3.
		

Crossrefs

This statistic is counted by A001263, unordered A358575 (reverse A055277).
The unordered version is A342507, firsts A358554.
Other statistics: A358371 (leaves), A358372 (nodes), A358379 (edge-height).
A000081 counts rooted trees, ordered A000108.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Count[srt[n],[_],{0,Infinity}],{n,100}]

A378061 Triangle read by rows: T(n, k) = binomial(n + 1, (n - k)/2)^2*(k + 1)/(n + 1) if n - k is even, otherwise 0.

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 8, 0, 1, 20, 0, 15, 0, 1, 0, 75, 0, 24, 0, 1, 175, 0, 189, 0, 35, 0, 1, 0, 784, 0, 392, 0, 48, 0, 1, 1764, 0, 2352, 0, 720, 0, 63, 0, 1, 0, 8820, 0, 5760, 0, 1215, 0, 80, 0, 1, 19404, 0, 29700, 0, 12375, 0, 1925, 0, 99, 0, 1
Offset: 0

Views

Author

Peter Luschny, Dec 07 2024

Keywords

Comments

Consider square lattice walks with unit steps in all four directions (NSWE), starting at the origin, ending on the y-axis, and never going below the x-axis. T(n, k) is the number of walks with length n and height k. The number of walks with positive height is A378060, and with nonnegative height is A018224. Walks of odd length can never have an even height, and walks of even length cannot have an odd height. The Python program below generates the walks.

Examples

			Triangle starts:
  0  [   1]
  1  [   0,    1]
  2  [   3,    0,    1]
  3  [   0,    8,    0,    1]
  4  [  20,    0,   15,    0,   1]
  5  [   0,   75,    0,   24,   0,    1]
  6  [ 175,    0,  189,    0,  35,    0,  1]
  7  [   0,  784,    0,  392,   0,   48,  0,  1]
  8  [1764,    0, 2352,    0, 720,    0, 63,  0, 1]
  9  [   0, 8820,    0, 5760,   0, 1215,  0, 80, 0, 1]
.
The 15 walks with length 4 and height 2 are: 'NNNS', 'NNSN', 'NNWE', 'NNEW', 'NSNN', 'NWNE', 'NWEN', 'NENW', 'NEWN', 'WNNE', 'WNEN', 'WENN', 'ENNW', 'ENWN', 'EWNN'.
		

Crossrefs

The columns are aerated rows of A378062. See also: A000891, A145600, A145601, A145602, A145603.
Cf. A018224 (row sums), A378060.

Programs

  • Maple
    T := (n, k) -> ifelse((n - k)::odd, 0, binomial(n+1, (n-k)/2)^2*(k+1)/(n+1)):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    T[n_, k_] := If[EvenQ[n-k],Binomial[n + 1, (n - k)/2]^2*(k + 1)/(n + 1), 0]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Dec 08 2024 *)
  • Python
    # Creates the table by counting the heights of square lattice walks. For illustration only.
    from dataclasses import dataclass
    @dataclass
    class Z: w: str = ""; r: int = 0; i: int = 0
    def Trow(n: int) -> list[int]:
        W = [Z()]
        row = [0] * (n + 1)
        for x in W:
            if len(x.w) == n:
                if x.r == 0: row[x.i] += 1
            else:
                for s in "NSWE":
                    r = i = 0
                    match s:
                        case "W": r = 1
                        case "E": r = -1
                        case "N": i = 1
                        case "S": i = -1
                    if x.i + i >= 0:
                        W.append(Z(x.w + s, x.r + r, x.i + i))
        return row
    for n in range(10): print(f"[{n}] {Trow(n)}")

A382136 Number of triples of non-crossing lattice paths from (0,0) to (n,n) using (1,0) and (0,1) as steps.

Original entry on oeis.org

1, 4, 50, 980, 24696, 731808, 24293412, 877262100, 33803832920, 1371597504992, 58043512597616, 2543610972177184, 114801908084920000, 5313688317073440000, 251370667949555421000, 12120154230252872020500, 594283640753967620247000, 29576997448419995135100000
Offset: 0

Views

Author

Yifan Xie, Mar 27 2025

Keywords

Comments

a(n) is the number of triples (A, B, C) of paths having no common vertices and using (1,0) and (0,1) as steps, where A is from (0,0) to (n,n), B is from (1,-1) to (n+1,n-1), and C is from (2,-2) to (n+2,n-2).
a(n) is the number of ways to fill a n X n grid with numbers 1, 2, 4, 8 such that each number divides the number to the right and to the top.
a(n) is the number of secondary GL(3) invariants contructed from n+2 distinct three component vectors. This number was evaluated by using the Molien-Weyl formula to compute the Hilbert series of the ring of invariants. - Jaco van Zyl, Jun 30 2025

Examples

			For n = 2, the triple {NNEE, NENE, ENEN} is valid, while {ENNE, NNEE, NEEN} is invalid.
		

Crossrefs

Programs

  • Mathematica
    A382136[n_] := If[n == 0, 1, 4*Binomial[2*n+1, n-1]^2*Binomial[2*n, n-1]/n^3];
    Array[A382136, 20, 0] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    a(n) = if(n==0, 1, 4*binomial(2*n+1, n-1)^2*binomial(2*n, n-1)/n^3)

Formula

From the Lindstrom-Gessel-Viennot lemma and using the definition from the first comment, a(n) is the determinant of the matrix:
C(2*n, n) C(2*n, n-1) C(2*n, n-2)
C(2*n, n+1) C(2*n, n) C(2*n, n-1)
C(2*n, n+2) C(2*n, n+1) C(2*n, n)
a(n) = 4*C(2*n+1,n-1)*C(2*n+1,n+2)*C(2*n,n+1)/n^3 for n >= 1.

A120307 Inverse determinant of n X n matrix M[i,j] = i*j/(i+j-1).

Original entry on oeis.org

1, 3, 60, 10500, 18522000, 359400888000, 81408613942656000, 224737840779305293440000, 7812628980363223707442752000000, 3508978524227146242839564498172672000000
Offset: 1

Views

Author

Alexander Adamchuk, Jul 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ 1/Det[ Table[ i*j/(i+j-1), {i, n}, {j, n}]], {n,1,12}]
  • Sage
    def A120307(n): return A163085(2*n)/factorial(2*n)
    [A120307(n) for n in (1..10)] # Peter Luschny, Sep 18 2012

Formula

a(n) = 1/Det[ Table[ i*j/(i+j-1), {i, n}, {j, n}]]. a(n+1)/a(n) = A000891[n] = (2n)!(2n+1)! / (n! (n+1)!)^2 = (2n+1)*CatalanNumber[n]^2 = (2n+1)*A000108[n]^2 = C(2n+1,n+1)*CatalanNumber[n] = A001700[n]*A000108[n].
a(n) = A163085(2*n)/(2*n)!. - Peter Luschny, Sep 18 2012

A267981 a(n) = Catalan(n)^2*(4n + 2).

Original entry on oeis.org

2, 6, 40, 350, 3528, 38808, 453024, 5521230, 69526600, 898283672, 11848435872, 158966514616, 2163449607200, 29802622140000, 414852500188800, 5827381213589550, 82510878636707400, 1176544010190087000, 16882265852589060000, 243611096252860135800
Offset: 0

Views

Author

Ralf Steiner, Jan 23 2016

Keywords

Comments

Numerator of (4n+2)*(Wallis-Lambert-series-1)(n) with denominator A013709(n) convergent to 2*(1-2/Pi). Proof: Both the Wallis-Lambert-series-1=4/Pi-1 and the elliptic Euler-series=1-2/Pi are absolutely convergent series. Thus any linear combination of the terms of these series will be also absolutely convergent to the value of the linear combination of these series - in this case to 2*(1-2/Pi). Q.E.D.

Examples

			For n=3 the a(3)=350.
		

Crossrefs

Cf. A013709 (denominator). Equals twice A000891.

Programs

  • Magma
    [Catalan(n)^2*(4*n+2):n in [0..20]]; // Vincenzo Librandi, Jan 25 2016
    
  • Mathematica
    Table[CatalanNumber[n]^2 (4 n + 2), {n, 0, 20}] (* Vincenzo Librandi, Jan 25 2016 *)
  • PARI
    a000108(n) = binomial(2*n, n)/(n+1)
    a(n) = a000108(n)^2 * (4*n+2) \\ Felix Fröhlich, Jul 14 2016

Formula

G.f.: (Pi-2*EllipticE(16*x))/(2*Pi*x). - Benedict W. J. Irwin, Jul 14 2016
a(n) ~ 4^(2*n+1)/(Pi*n^2). - Ilya Gutkovskiy, Jul 14 2016
Recurrence: (n+1)^2*a(n) = 4*(2*n - 1)*(2*n + 1)*a(n-1). - Vaclav Kotesovec, Jul 16 2016
Sum_{n>=0} a(n)/2^(4*n+2) = 2 - 4/Pi. - Vaclav Kotesovec, Jul 16 2016

Extensions

More terms from Vincenzo Librandi, Jan 25 2016

A362207 a(n) is the number of unordered triples of shortest nonintersecting grid paths joining two opposite corners of an n X n X n grid.

Original entry on oeis.org

2, 1440, 5039744, 30456915312, 244247250106272, 2330237215901633376, 25005390829898900970720, 292102859220245236374450192, 3638369778575244135648725730848, 47651985114895805442163075548018912, 649794504408024777960179124905242154688
Offset: 1

Views

Author

Janaka Rodrigo, Apr 11 2023

Keywords

Comments

An n X n X n grid is a cube with (n+1)^3 grid points. Each of the three paths has 3*n steps and they intersect only at the start and at the end. Initially, each path will start by moving along distinct coordinate axes.

Crossrefs

The two-dimensional version of this sequence is A000891(n-1).

Extensions

a(4)-a(11) from Andrew Howroyd, Apr 11 2023
Previous Showing 31-40 of 45 results. Next