cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 241 results. Next

A152198 Triangle read by rows, A007318 rows repeated.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 28 2008

Keywords

Comments

Eigensequence of the triangle = A051163: (1, 2, 5, 12, 30, 76,...)
Another version of A152815. - Philippe Deléham, Dec 13 2008
Row sums : A016116(n); Diagonal sums: A000931(n+5). - Philippe Deléham, Dec 13 2008
Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 16 2012
Sums along rising diagonals are A134816. - John Molokach, Jul 09 2013

Examples

			The triangle starts
1;
1;
1, 1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 3, 3, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
1, 4, 6, 4, 1;
1, 5, 10, 10, 5, 1;
1, 5, 10, 10, 5, 1;
...
Triangle (1,0,-1,0,0,...) DELTA (0,1,-1,0,0,...) begins:
1
1, 0
1, 1, 0
1, 1, 0, 0
1, 2, 1, 0, 0
1, 2, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0, 0
1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[ Floor[n/2], k]; Table[t[n, k], {n, 0, 17}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Sep 13 2012 *)

Formula

Triangle read by rows, Pascal's triangle rows repeated.
Equals inverse binomial transform of A133156 unsigned.
G.f. : (1+x)/(1-(1+y)*x^2). - Philippe Deléham, Jan 16 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057077(n), A019590(n+1), A000012(n), A016116(n), A108411(n), A074872(n+1) for x = -2, -1, 0, 1, 2, 4 respectively. - Philippe Deléham, Jan 16 2012
T(n,k) = A065941(n-k, n-2*k) = abs(A108299(n-k, n-2*k)). - Johannes W. Meijer, Sep 05 2013

Extensions

More terms from Philippe Deléham, Dec 14 2008

A164001 Spiral of triangles around a hexagon.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2009

Keywords

Comments

a(n) is the side length of the n-th triangle in a spiral around a hexagon with side length = 1.
Sequence very similar to A134816, but without repeated terms. Records in A134816. Also records in A000931, the Padovan sequence.
Column k=2 of A242464 (with offset 0). - Alois P. Heinz, May 19 2014
a(n) is the number of bitstrings of length n-1 without two consecutive 0's or three consecutive 1's. - Zachary Stier, Mar 16 2021

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Cf. A060006.

Programs

  • Mathematica
    LinearRecurrence[{0,1,1},{1,2,3,4},50] (* Harvey P. Dale, Jul 08 2017 *)

Formula

If n < 5 then a(n) = n, otherwise a(n) = a(n-2) + a(n-3).
G.f.: -x - 1 + (-x^2 - 2*x - 1)/(-1 + x^2 + x^3). a(n) = A000931(n+4) + A000931(n+5) = A000931(n+7), n > 1. - R. J. Mathar, Oct 29 2009
a(n) ~ 1.67873... * 1.32471...^(n-1) where 1.32471... is the real root of x^3 - x - 1 = 0 (see A060006), and 1.67873... is the real root of 23*x^3 - 46*x^2 + 13*x - 1 = 0. - Ricardo Bittencourt, May 14 2023

A050935 a(n) = a(n-1) - a(n-3) with a(1)=0, a(2)=0, a(3)=1.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, -1, -2, -2, -1, 1, 3, 4, 3, 0, -4, -7, -7, -3, 4, 11, 14, 10, -1, -15, -25, -24, -9, 16, 40, 49, 33, -7, -56, -89, -82, -26, 63, 145, 171, 108, -37, -208, -316, -279, -71, 245, 524, 595, 350, -174, -769, -1119, -945, -176, 943, 1888, 2064, 1121, -767, -2831, -3952
Offset: 1

Views

Author

Richard J. Palmaccio (palmacr(AT)pinecrest.edu), Dec 31 1999

Keywords

Comments

The Ze3 sums, see A180662, of triangle A108299 equal the terms of this sequence without the two leading zeros. - Johannes W. Meijer, Aug 14 2011

References

  • R. Palmaccio, "Average Temperatures Modeled with Complex Numbers", Mathematics and Informatics Quarterly, pp. 9-17 of Vol. 3, No. 1, March 1993.

Crossrefs

When run backwards this gives a signed version of A000931.
Cf. A099529.
Apart from signs, essentially the same as A078013.
Cf. A203400 (partial sums).

Programs

  • Haskell
    a050935 n = a050935_list !! (n-1)
    a050935_list = 0 : 0 : 1 : zipWith (-) (drop 2 a050935_list) a050935_list
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Maple
    A050935 := proc(n) option remember; if n <= 1 then 0 elif n = 2 then 1 else A050935(n-1)-A050935(n-3); fi; end: seq(A050935(n), n=0..61);
  • Mathematica
    LinearRecurrence[{1,0,-1},{0,0,1},70] (* Harvey P. Dale, Jan 30 2014 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,0,1]^(n-1)*[0;0;1])[1,1] \\ Charles R Greathouse IV, Feb 06 2017

Formula

From Paul Barry, Oct 20 2004: (Start)
G.f.: x^2/(1-x+x^3).
a(n+2) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k. (End)
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(12*k-1 + x^2)/( x*(12*k+5 + x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 12 2013

Extensions

Offset adjusted by Reinhard Zumkeller, Jan 01 2012

A152815 Triangle T(n,k), read by rows given by [1,0,-1,0,0,0,0,0,0,...] DELTA [0,1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 13 2008

Keywords

Comments

Triangle read by rows, Pascal's triangle (A007318) rows repeated.
Riordan array (1/(1-x), x^2/(1-x^2)). - Philippe Deléham, Feb 27 2012

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1, 0;
  1, 1, 0, 0;
  1, 2, 1, 0, 0;
  1, 2, 1, 0, 0, 0;
  1, 3, 3, 1, 0, 0, 0;
  1, 3, 3, 1, 0, 0, 0, 0;
  1, 4, 6, 4, 1, 0, 0, 0, 0; ...
		

Crossrefs

Cf. A007318, A064861, A152198 (another version), A000931 (diagonal sums), A016116 (row sums).

Programs

  • Haskell
    a152815 n k = a152815_tabl !! n !! k
    a152815_row n = a152815_tabl !! n
    a152815_tabl = [1] : [1,0] : t [1,0] where
       t ys = zs : zs' : t zs' where
         zs' = zs ++ [0]; zs = zipWith (+) ([0] ++ ys) (ys ++ [0])
    -- Reinhard Zumkeller, Feb 28 2012
    
  • Mathematica
    m = 13;
    (* DELTA is defined in A084938 *)
    DELTA[Join[{1, 0, -1}, Table[0, {m}]], Join[{0, 1, -1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
    T[n_, k_] := If[n<0, 0, Binomial[Floor[n/2], k]]; (* Michael Somos, Oct 01 2022 *)
  • PARI
    {T(n, k) = if(n<0, 0, binomial(n\2, k))}; /* Michael Somos, Oct 01 2022 */

Formula

T(n,k) = T(n-1,k) + ((1+(-1)^n)/2)*T(n-1,k-1).
G.f.: (1+x)/(1-(1+y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A016116(n), A108411(n), A213173(n), A074872(n+1) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 26 2011, Apr 22 2013

Extensions

Example corrected by Philippe Deléham, Dec 13 2008

A197054 T(n,k)=Number of nXk 0..4 arrays with each element equal to the number of its horizontal and vertical zero neighbors.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 4, 4, 3, 4, 6, 10, 6, 4, 5, 10, 18, 18, 10, 5, 7, 16, 38, 42, 38, 16, 7, 9, 26, 78, 108, 108, 78, 26, 9, 12, 42, 156, 274, 358, 274, 156, 42, 12, 16, 68, 320, 692, 1132, 1132, 692, 320, 68, 16, 21, 110, 654, 1754, 3580, 4468, 3580, 1754, 654, 110, 21, 28
Offset: 1

Views

Author

R. H. Hardin, Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's
Also, the number of maximal independent vertex sets in the grid graph P_n X P_k. - Andrew Howroyd, May 16 2017

Examples

			Table starts
..1...2....2.....3......4.......5........7.........9.........12..........16
..2...2....4.....6.....10......16.......26........42.........68.........110
..2...4...10....18.....38......78......156.......320........654........1326
..3...6...18....42....108.....274......692......1754.......4442.......11248
..4..10...38...108....358....1132.....3580.....11382......36270......114992
..5..16...78...274...1132....4468....17742.....70616.....281202.....1117442
..7..26..156...692...3580...17742....88056....439338....2192602....10912392
..9..42..320..1754..11382...70616...439338...2745186...17155374...106972582
.12..68..654..4442..36270..281202..2192602..17155374..134355866..1049189170
.16.110.1326.11248.114992.1117442.10912392.106972582.1049189170.10264692132
...
Some solutions for n=6 k=4
..0..2..1..0....0..2..0..1....2..0..2..0....0..3..0..2....0..2..1..0
..2..0..1..2....1..1..1..1....0..2..1..1....2..0..4..0....3..0..1..2
..1..1..2..0....1..0..2..0....2..1..0..2....1..2..0..2....0..3..1..0
..0..3..0..3....1..1..1..1....0..2..2..0....0..1..1..1....2..0..1..2
..3..0..4..0....0..3..0..2....3..0..1..2....1..1..1..0....1..1..2..0
..0..3..0..2....2..0..3..0....0..2..1..0....1..0..1..1....0..2..0..2
		

Crossrefs

Column 1 is A000931(n+6).
Column 2 is A006355(n+1).
Columns 3-7 are A197049, A197050, A197051, A197052, A197053.
Main diagonal is A197048.
Cf. A089934 (independent sets), A218354 (dominating sets).

A060945 Number of compositions (ordered partitions) of n into 1's, 2's and 4's.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424, 1164823609
Offset: 0

Views

Author

Len Smiley, May 07 2001

Keywords

Comments

Diagonal sums of A038137. - Paul Barry, Oct 24 2005
From Gary W. Adamson, Oct 28 2010: (Start)
INVERT transform of the aerated Fibonacci sequence (1, 0, 1, 0, 2, 0, 3, 0, 5, ...).
a(n) = term (4,4) in the n-th power of the matrix [0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,1,1]. (End)
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=3, I={2}. - Vladimir Baltic, Mar 07 2012
Number of compositions of n if the summand 2 is frozen in place or equivalently, if the ordering of the summand 2 does not count. - Gregory L. Simay, Jul 18 2016
a(n) - a(n-2) = number of compositions of n with no 2's = A005251(n+1). - Gregory L. Simay, Jul 18 2016
In general, the number of compositions of n with summand k frozen in place is equal to the number of compositions of n with only summands 1,...,k,2k. - Gregory L. Simay, May 10 2017
In the same way that the sum of any two alternating terms of A006498 produces a term from A000045 (the Fibonacci sequence), so it could be thought of as a "meta-Fibonacci," and the sum of any two alternating terms of A013979 produces a term from A000930 (Narayana’s cows), so it could analogously be called "meta-Narayana’s cows," this sequence embeds (can generate) A000931 (the Padovan sequence), as the odd terms of A000931 are generated by the sum of successive elements (e.g. 1+2=3, 2+3=5, 3+6=9, 6+10=16) and its even terms are generated by the difference of "supersuccessive" (second-order successive or "alternating," separated by a single other term) terms (e.g. 10-3=7, 18-6=12, 31-10=21, 55-18=37) — or, equivalently, adding "supersupersuccessive" terms (separated by 2 other terms, e.g. 1+6=7, 2+10=12, 3+18=21, 6+31=37) — so it could be dubbed the "metaPadovan." - Michael Cohen and Yasuyuki Kachi, Jun 13 2024

Examples

			There are 18=a(6) compositions of 6 with the summand 2 frozen in place: (6), (51), (15), (4[2]), (33), (411), (141), (114), (3[2]1), (1[2]3), ([222]), (3111), (1311), (1131), (1113), ([22]11), ([2]1111), (111111). Equivalently, the position of the summand 2 does not affect the composition count. For example, (321)=(231)=(312) and (123)=(213)=(132).
		

Crossrefs

Cf. A000045 (1's and 2's only), A023359 (all powers of 2)
Same as unsigned version of A077930.
All of A060945, A077930, A181532 are variations of the same sequence. - N. J. A. Sloane, Mar 04 2012

Programs

  • Haskell
    a060945 n = a060945_list !! (n-1)
    a060945_list = 1 : 1 : 2 : 3 : 6 : zipWith (+) a060945_list
       (zipWith (+) (drop 2 a060945_list) (drop 3 a060945_list))
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( 1/(1-x-x^2-x^4) )); // G. C. Greubel, Apr 09 2021
    
  • Maple
    m:= 40; S:= series( 1/(1-x-x^2-x^4), x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 09 2021
  • Mathematica
    LinearRecurrence[{1,1,0,1}, {1,1,2,3}, 39] (* or *)
    CoefficientList[Series[1/(1-x-x^2-x^4), {x, 0, 38}], x] (* Michael De Vlieger, May 10 2017 *)
  • PARI
    N=66; my(x='x+O('x^N));
    Vec(1/(1-x-x^2-x^4))
    /* Joerg Arndt, Oct 21 2012 */
    
  • Sage
    def A060945_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x-x^2-x^4) ).list()
    A060945_list(40) # G. C. Greubel, Apr 09 2021

Formula

a(n) = a(n-1) + a(n-2) + a(n-4).
G.f.: 1 / (1 - x - x^2 - x^4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} C(i, n-k-i)*C(2*i-n+k, 3*k-2*n+2*i). - Paul Barry, Oct 24 2005
a(2n) = A238236(n), a(2n+1) = A097472(n). - Philippe Deléham, Feb 20 2014
a(n) + a(n+1) = A005314(n+2). - R. J. Mathar, Jun 17 2020

Extensions

a(0) = 1 prepended by Joerg Arndt, Oct 21 2012

A364457 Number A(n,k) of tilings of a k X n rectangle using dominoes and trominoes (of any shape); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 6, 1, 1, 1, 2, 17, 30, 17, 2, 1, 1, 2, 43, 145, 145, 43, 2, 1, 1, 3, 108, 733, 1352, 733, 108, 3, 1, 1, 4, 280, 3540, 12688, 12688, 3540, 280, 4, 1, 1, 5, 727, 17300, 115958, 226922, 115958, 17300, 727, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 25 2023

Keywords

Examples

			A(3,2) = A(2,3) = 6:
  .___.   .___.   .___.   .___.   .___.   .___.
  | | |   |___|   | | |   |___|   | ._|   |_. |
  | | |   |___|   |_|_|   | | |   |_| |   | |_|
  |_|_|   |___|   |___|   |_|_|   |___|   |___|  .
.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,          1,            1, ...
  1, 0,   1,     1,       1,        2,          2,            3, ...
  1, 1,   2,     6,      17,       43,        108,          280, ...
  1, 1,   6,    30,     145,      733,       3540,        17300, ...
  1, 1,  17,   145,    1352,    12688,     115958,      1075397, ...
  1, 2,  43,   733,   12688,   226922,    3927233,     68846551, ...
  1, 2, 108,  3540,  115958,  3927233,  128441094,   4263997124, ...
  1, 3, 280, 17300, 1075397, 68846551, 4263997124, 267855152858, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A182097(n) = A000931(n+3), A019439, A364460, A364155, A364556, A364616, A364617, A364632, A364638, A364640.
Main diagonal gives A364504.

Formula

A(n,k) = A(k,n).

Extensions

Terms n,k>=4 had to be corrected as was pointed out by Martin Fuller and David Radcliffe - Alois P. Heinz, Apr 05 2025

A078027 Expansion of (1 - x)/(1 - x^2 - x^3).

Original entry on oeis.org

1, -1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • GAP
    a:=[1,-1,1];; for n in [4..60] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Aug 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x)/(1-x^2-x^3) )); // G. C. Greubel, Aug 04 2019
    
  • Maple
    seq(coeff(series((1-x)/(1-x^2-x^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Aug 04 2019
  • Mathematica
    CoefficientList[Series[(1-x)/(1-x^2-x^3), {x,0,60}], x] (* G. C. Greubel, Aug 04 2019 *)
    LinearRecurrence[{0,1,1},{1,-1,1},60] (* Harvey P. Dale, Jun 20 2020 *)
  • PARI
    Vec((1-x)/(1-x^2-x^3)+O(x^60)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    ((1-x)/(1-x^2-x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
    

Formula

a(n) is asymptotic to r^(n-2) / (2*r+3) where r = 1.3247179572447..., the real root of x^3 = x + 1. For n >= 4, a(n) = a(n-2) + a(n-3). - Philippe Deléham, Jan 13 2004
a(n) = A182097(n) - A182097(n-1). - R. J. Mathar, Jan 27 2018

A124745 Expansion of (1+x)/(1-x^2+x^3).

Original entry on oeis.org

1, 1, 1, 0, 0, -1, 0, -1, 1, -1, 2, -2, 3, -4, 5, -7, 9, -12, 16, -21, 28, -37, 49, -65, 86, -114, 151, -200, 265, -351, 465, -616, 816, -1081, 1432, -1897, 2513, -3329, 4410, -5842, 7739, -10252, 13581, -17991, 23833, -31572, 41824, -55405, 73396, -97229, 128801
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Crossrefs

Row sums of A124744.
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • Mathematica
    LinearRecurrence[{0, 1, -1}, {1, 1, 1}, 100] (* Paolo Xausa, Aug 27 2024 *)

Formula

a(n) = Sum_{k=0..n} C(floor(k/2),n-k)*(-1)^(n-k) = (-1)^n*A078027(n).
a(n) = a(n-2) - a(n-3) with a(0) = a(1) = a(2) = 1. - Taras Goy, Mar 24 2019

A228361 The number of all possible covers of L-length line segment by 2-length line segments with allowed gaps < 2.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 21 2013

Keywords

Crossrefs

Second row of A228360.
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^2 - x^3)^-1 (1 + x)^2 x^2 , {x, 0, 100}], x]

Formula

For n>1, a(n) = A134816(n).
G.f.: x^2*(1+x)^2/(1-x^2-x^3).
a(n) = a(n-2) +a(n-3) for n >= 5.
a(n) = A000931(n+5), n>1. - R. J. Mathar, Sep 02 2013
Previous Showing 61-70 of 241 results. Next