cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 242 results. Next

A103377 a(1)=a(2)=...=a(10)=1, a(n)=a(n-9)+a(n-10).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 128, 129, 136, 157, 192, 227
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Comments

k=9 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374, k=7 case is A103375, k=8 case is A103376, k=10 case is A103378 and k=11 case is A103379. The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1)= 1 and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]). For this k=9 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^10 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0757660660868371580595995241652758206925302476392 = A230163. Note that x = (1 + x)^(1/10) = (1 + (1 + (1 + ...)^(1/10))^(1/10))^(1/10). The sequence of prime values in this k=9 case is A103387; The sequence of semiprime values in this k=9 case is A103397.
In analogy to the Fibonacci sequence, one might prefer to start this sequence with offset 0. - M. F. Hasler, Sep 19 2015

Examples

			a(83) = 257 because a(83) = a(83-9) + a(83-10). a(74) + a(73) = 129 + 128. This sequence has as elements 5, 17 and 257, which are all Fermat Primes.
		

References

  • A. J. van Zanten, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, vol 17 no 2 (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 90] (* Charles R Greathouse IV, Jan 11 2013 *)
  • PARI
    Vec((1+x+x^2)*(1+x^3+x^6)/(1-x^9-x^10)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2013

Formula

a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = 1 and for n>10: a(n) = a(n-9) + a(n-10).
O.g.f.: -x*(x^2+x+1)*(x^6+x^3+1)/(-1+x^9+x^10). - R. J. Mathar, May 02 2008

Extensions

Edited by R. J. Mathar, May 02 2008
Edited by M. F. Hasler, Sep 19 2015

A099098 Quadrisection of a Padovan sequence.

Original entry on oeis.org

1, 1, 4, 12, 37, 114, 351, 1081, 3329, 10252, 31572, 97229, 299426, 922111, 2839729, 8745217, 26931732, 82938844, 255418101, 786584466, 2422362079, 7459895657, 22973462017, 70748973084, 217878227876, 670976837021, 2066337330754
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

Quadrisection of sequence with g.f. 1/(1-x^2-x^3), or A000931(n+3).

Examples

			1 + x + 4*x^2 + 12*x^3 + 37*x^4 + 114*x^5 + 351*x^6 + ...
		

Crossrefs

Bisection of A005251.

Programs

  • Mathematica
    LinearRecurrence[{2,3,1},{1,1,4},40] (* Harvey P. Dale, Aug 23 2011 *)

Formula

G.f.: (1-x-x^2)/(1-2x-3x^2-x^3);
a(n)=sum{k=0..2n, binomial(k, 4n-2k)};
a(n)=2a(n-1)+3a(n-2)+a(n-3);
a(n)=A000931(4n+3).
a(n) = Sum [k=0..n, C(2n-k, 2k) ].

A104769 Expansion of g.f. -x/(1+x-x^3).

Original entry on oeis.org

0, -1, 1, -1, 0, 1, -2, 2, -1, -1, 3, -4, 3, 0, -4, 7, -7, 3, 4, -11, 14, -10, -1, 15, -25, 24, -9, -16, 40, -49, 33, 7, -56, 89, -82, 26, 63, -145, 171, -108, -37, 208, -316, 279, -71, -245, 524, -595, 350, 174, -769, 1119, -945, 176, 943, -1888, 2064, -1121, -767, 2831, -3952
Offset: 0

Views

Author

Creighton Dement, Mar 24 2005

Keywords

Comments

Generating floretion is "jesright".
Pisano period lengths: 1, 7, 13, 14, 24, 91, 48, 28, 39, 168, 120, 182, 183, 336, 312, 56, 288, 273, 180, 168,.. (which differs from A104217 for example at index 23). - R. J. Mathar, Aug 10 2012

Crossrefs

Apart from signs, essentially the same as A050935 and A078013.
Cf. A247917 (negative).

Programs

  • Mathematica
    LinearRecurrence[{-1, 0, 1}, {0, -1, 1}, 61] (* or *)
    CoefficientList[Series[-x/(1 + x - x^3), {x, 0, 60}], x] (* Michael De Vlieger, Jul 02 2021 *)
  • PARI
    a(n)=([0,1,0;0,0,1;1,0,-1]^n*[0;-1;1])[1,1] \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = -A247917(n-1).
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 0, a(1) = -1, a(2) = 1.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5).
a(n) = ((-1)^n)*A050935(n+1) = ((-1)^n)*A078013(n+2).
a(n) = A104771(n) - A104770(n).

Extensions

Edited by Ralf Stephan, Apr 05 2009

A126772 Padovan factorials: a(n) is the product of the first n terms of the Padovan sequence. Similar to the Fibonacci factorial.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 48, 240, 1680, 15120, 181440, 2903040, 60963840, 1706987520, 63158538240, 3094768373760, 201159944294400, 17299755209318400, 1972172093862297600, 297797986173206937600, 59559597234641387520000
Offset: 1

Views

Author

John Lien, Feb 17 2007

Keywords

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Sep 14 2010: (Start)
    A000931 := proc(n) option remember; if n = 0 then 1; elif n <=2 then 0; else procname(n-2)+procname(n-3) ; end if; end proc:
    A126772 := proc(n) mul( A000931(i),i=5..n+4) ; end proc: seq(A126772(n),n=1..40) ; (End)
  • Mathematica
    Rest[FoldList[Times,1,LinearRecurrence[{0,1,1},{1,1,1},30]]] (* Harvey P. Dale, Apr 29 2013 *)

Formula

a(n) ~ c * d^(n/2) * r^(n^2/2), where r = 1.324717957244746... (see A060006) is the root of the equation r^3 = r + 1, d = 0.393641282401116385386658448446561... is the root of the equation 1 + 7*d + 184*d^2 - 529*d^3 = 0, c = 1.25373683131537208838997864311903035079685338006712312402418098138010834953... (see A253924). - Vaclav Kotesovec, Jan 26 2015

Extensions

More terms from R. J. Mathar, Sep 14 2010

A203181 T(n,k) is the number of n X k 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 4, 7, 4, 3, 4, 6, 17, 17, 6, 4, 5, 10, 41, 59, 41, 10, 5, 7, 18, 97, 205, 205, 97, 18, 7, 9, 30, 235, 724, 952, 724, 235, 30, 9, 12, 50, 607, 2466, 4654, 4654, 2466, 607, 50, 12, 16, 86, 1415, 8948, 23083, 32411, 23083, 8948, 1415, 86, 16, 21, 146
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2011

Keywords

Comments

Table starts
.1..1...2....2......3.......4........5.........7..........9..........12
.1..1...2....4......6......10.......18........30.........50..........86
.2..2...7...17.....41......97......235.......607.......1415........3486
.2..4..17...59....205.....724.....2466......8948......30945......108083
.3..6..41..205....952....4654....23083....115377.....551208.....2757161
.4.10..97..724...4654...32411...223567...1625772...10889470....76035931
.5.18.235.2466..23083..223567..2208945..22411843..216858412..2141041521
.7.30.607.8948.115377.1625772.22411843.323885934.4389100997.61921804090

Examples

			Some solutions for n=5 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..2
..1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1
..2..1..2....2..1..0....2..1..2....0..1..0....0..1..2....0..1..2....0..1..0
..0..1..2....0..1..2....0..1..0....1..2..1....1..2..0....1..2..0....1..2..1
..1..0..1....1..0..1....1..0..1....2..0..1....0..1..1....0..1..1....2..0..1
		

Crossrefs

Column 1 is A000931(n+5). Column 2 is A203175.

A012855 a(0) = 0, a(1) = 1, a(2) = 1; thereafter a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3).

Original entry on oeis.org

0, 1, 1, 1, 2, 7, 28, 114, 465, 1897, 7739, 31572, 128801, 525456, 2143648, 8745217, 35676949, 145547525, 593775046, 2422362079, 9882257736, 40315615410, 164471408185, 670976837021, 2737314167775, 11167134898976
Offset: 0

Views

Author

Keywords

Comments

Old name was "Take every 5th term of Padovan sequence A000931".
Lim_{n -> infinity} a(n+1)/a(n) = p^5 = 4.0795956..., where p is the plastic constant (A060006). - Jianing Song, Feb 04 2019

Crossrefs

Programs

  • Maple
    A012855 := proc(n,A,B,C) option remember; if n = 0 then A elif n = 1 then B elif n = 2 then C else 5*procname(n-1,A,B,C)-4*procname(n-2,A,B,C)+procname(n-3,A,B,C); fi; end; [ seq(A012855(i,0,1,1),i = 0..40) ]; # R. J. Mathar, Dec 30 2011
  • Mathematica
    CoefficientList[Series[(4x^2-x)/(x^3-4x^2+5x-1),{x,0,40}],x] (* or *) LinearRecurrence[{5,-4,1},{0,1,1},40] (* Harvey P. Dale, Mar 28 2013 *)
  • PARI
    a(n) = my(v=vector(n+1), u=[0,1,1]); for(k=1, n+1, v[k]=if(k<=3, u[k], 5*v[k-1] - 4*v[k-2] + v[k-3])); v[n+1] \\ Jianing Song, Feb 04 2019

Formula

a(n) = A000931(5*n-12) for n >= 3. - Alois P. Heinz, Feb 04 2019
G.f. (4x^2 - x)/(x^3 - 4x^2 + 5x - 1). For n > 2, a(n) = 1 + Sum_{k=0..n-3} A012814(k). - Ralf Stephan, Jan 15 2004
a(n) = 1 + A176476(n-3) = 1 + Sum_{k=0..n-3} A000931(5*k+2) for n >= 3. - Jianing Song, Feb 04 2019

Extensions

Edited by N. J. A. Sloane, Feb 06 2019 at the suggestion of Jianing Song, replacing imprecise definition with formula from Harvey P. Dale, Mar 28 2013

A017818 Expansion of 1/(1-x^3-x^4-x^5).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 2, 3, 3, 4, 6, 8, 10, 13, 18, 24, 31, 41, 55, 73, 96, 127, 169, 224, 296, 392, 520, 689, 912, 1208, 1601, 2121, 2809, 3721, 4930, 6531, 8651, 11460, 15182, 20112, 26642, 35293, 46754, 61936, 82047
Offset: 0

Views

Author

Keywords

Comments

Compositions of n into parts 3, 4, and 5. - David Neil McGrath, Jul 28 2014
The number of ways a T2 triangle can cover a row length of T1(n) triangles. - Craig Knecht, Mar 06 2025

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^3-x^4-x^5))); // Vincenzo Librandi, Jun 27 2013
    
  • Magma
    I:=[1,0,0,1,1]; [n le 5 select I[n] else Self(n-3)+Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Jun 27 2013
  • Mathematica
    CoefficientList[Series[1 / (1 - x^3 - x^4 - x^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
    LinearRecurrence[{0,0,1,1,1},{1,0,0,1,1},50] (* Harvey P. Dale, Oct 03 2020 *)

Formula

a(n) = (1/10)*(2*A001608(n) + 2*A000931(n+2) + (-1)^floor(n/2) - 3(-1)^floor((n-1)/2)). - Ralf Stephan, Jun 09 2005
a(n) = a(n-5) + a(n-4) + a(n-3). - Jon E. Schoenfield, Aug 07 2006
a(2n+3) = A060945(n). - Yasuyuki Kachi, Jul 06 2024

A047350 Numbers that are congruent to {1, 2, 4} mod 7.

Original entry on oeis.org

1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46, 50, 51, 53, 57, 58, 60, 64, 65, 67, 71, 72, 74, 78, 79, 81, 85, 86, 88, 92, 93, 95, 99, 100, 102, 106, 107, 109, 113, 114, 116, 120, 121, 123, 127, 128, 130, 134, 135, 137, 141
Offset: 1

Views

Author

Keywords

Comments

a(n+1) = a(n) + (a(n) mod 7). - Ben Paul Thurston, Jan 09 2008
Also defined by: a(1)=1, and a(n) = smallest number larger than a(n-1) such that a(n)^3 - a(n-1)^3 is divisible by 7. - Zak Seidov, Apr 21 2009
Union of A047353 and A017029. - R. J. Mathar, Apr 28 2009
Indices of the even numbers in the Padovan sequence. - Francesco Daddi, Jul 31 2011
Euler's problem (see Link lines, English translation by David Zao): Finding the values of a so that the form a^3-1 is divisible by 7. The three residuals that remain after the division of any square by 7 are 1, 2 and 4. Hence the values are 7n+1, 7n+2, 7n+4. - Bruno Berselli, Oct 24 2012

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 28 2009: (Start)
G.f.: x*(1 + x + 2*x^2 + 3*x^3)/((1 + x + x^2)*(x-1)^2).
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
a(n) = a(n-3) + 7 for n > 3. (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (21*n - 21 - 6*cos(2*n*Pi/3) + 4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-5, a(3k-2) = 7k-6. (End)
a(n) = 4*n - 3 - 2*floor(n/3) - 3*floor((n+1)/3). - Ridouane Oudra, Nov 23 2022

A103375 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = 1 and for n>8: a(n) = a(n-7) + a(n-8).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 65, 71, 86, 106, 121, 127, 128, 129, 136, 157, 192, 227, 248, 255, 257, 265, 293, 349, 419, 475, 503, 512
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=7 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373 and k=6 case is A103374.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=7 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^8 - x - 1 = 0. This is the real constant 1.09698155779855981790827896716753708959253010821278671381232885124855898059....
The sequence of prime values in this k=7 case is A103385; the sequence of semiprime values in this k=7 case is A103395.

Examples

			a(30) = 12 because a(30) = a(30-7) + a(30-8) = a(24) + a(23) = 7 + 5 = 12.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 7; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 73]
    LinearRecurrence[{0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1},80]
  • PARI
    a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; 1,1,0,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: -x*(1+x+x^2+x^3+x^4+x^5+x^6)/(-1+x^7+x^8). - R. J. Mathar, Dec 14 2009

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005
Corrected (one more 8 inserted) by R. J. Mathar, Dec 14 2009

A103376 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = 1 and for n>9: a(n) = a(n-8) + a(n-9).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 129, 136, 157, 192, 227, 248, 255, 256, 257, 265, 293
Offset: 1

Views

Author

Jonathan Vos Post, Feb 05 2005

Keywords

Comments

k=8 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374 and k=7 case is A103375.
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=8 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^9 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0850702454914508283368958640973142340506536310308 = A230162. Note that x = (1 + x)^(1/9) = (1 + (1 + (1 + ...)^(1/9))^(1/9))^(1/9).
The sequence of prime values in this k=8 case is A103386; The sequence of semiprime values in this k=8 case is A103396.

Examples

			a(93) = 1200 because a(93) = a(93-8) + a(93-9) = a(85) + a(84) = 642 + 558.
		

References

  • Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 8; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 76]
    LinearRecurrence[{0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1},80] (* Harvey P. Dale, May 07 2015 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,0,0,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x*(1+x)*(1+x^2)*(1+x^4)/(1-x^8-x^9). - R. J. Mathar, Dec 14 2009
a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=1, a(8)=1, a(9)=1, a(n)=a(n-8)+a(n-9). - Harvey P. Dale, May 07 2015

Extensions

Edited by Ray Chandler, Feb 10 2005
Previous Showing 81-90 of 242 results. Next