cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 82 results. Next

A126614 a(n) = (2^prime(n) + 1)/3.

Original entry on oeis.org

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 178956971, 715827883, 45812984491, 733007751851, 2932031007403, 46912496118443, 3002399751580331, 192153584101141163, 768614336404564651, 49191317529892137643, 787061080478274202283, 3148244321913096809131
Offset: 2

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

If p - 1 is squarefree, the multiplicative order of 2 modulo a(n) is 2p. - Vladimir Shevelev, Jul 15 2008
The prime numbers in this sequence are the Wagstaff primes (A000979). - Omar E. Pol, Nov 05 2013

Examples

			a(2) = (2^prime(2) + 1)/3 = (2^3 + 1)/3 = 9/3 = 3.
a(3) = (2^prime(3) + 1)/3 = (2^5 + 1)/3 = 33/3 = 11.
a(4) = (2^prime(4) + 1)/3 = (2^7 + 1)/3 = 129/3 = 43.
		

Crossrefs

Programs

Formula

a(n) = A001045(A000040(n)). - Alois P. Heinz, Apr 14 2025

A107036 Indices of prime Jacobsthal numbers.

Original entry on oeis.org

3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399
Offset: 1

Views

Author

Paul Barry, May 09 2005

Keywords

Comments

All terms are prime except a(1) = 4. All prime terms are listed in A000978. - Alexander Adamchuk, Oct 03 2006

Crossrefs

Programs

Formula

a(n) = A000978(n-1) for n >= 3. - Alexander Adamchuk, Oct 03 2006

Extensions

More terms from Alexander Adamchuk, Oct 03 2006
a(41)-a(42) from Bill McEachen, Aug 28 2024

A126856 Numbers n such that (31^n + 1)/32 is prime.

Original entry on oeis.org

109, 461, 1061, 50777
Offset: 1

Views

Author

Alexander Adamchuk, Mar 23 2007

Keywords

Comments

All terms are primes.
a(5) > 10^5. - Robert Price, Jul 12 2013

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (31^p + 1)/32 ], Print[p] ], {n,1,1100} ]
  • PARI
    is(n)=isprime((31^n+1)/32) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(4) from Robert Price, Jul 12 2013

A127936 Numbers k such that 1 + Sum_{i=1..k} 2^(2*i-1) is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 15, 21, 30, 39, 50, 63, 83, 95, 99, 156, 173, 350, 854, 1308, 1769, 2903, 5250, 5345, 5639, 6195, 7239, 21368, 41669, 47684, 58619, 63515, 69468, 70539, 133508, 134993, 187160, 493095
Offset: 1

Views

Author

Artur Jasinski, Feb 08 2007, Feb 09 2007

Keywords

Comments

If this sequence is infinite then so is A124401.
Equals A127965(n)/2.
The sum has the simple closed form 1 + 2/3*(4^n-1). - Stefan Steinerberger, Nov 24 2007
Terms beyond a(30) correspond to probable primes, cf. A000978. - M. F. Hasler, Aug 29 2008

Examples

			a(1)=1 because 1 + 2 = 3 is prime;
a(2)=2 because 1 + 2 + 2^3 = 11 is prime;
a(3)=3 because 1 + 2 + 2^3 + 2^5 = 43 is prime;
a(4)=5 because 1 + 2 + 2^3 + 2^5 + 2^7 + 2^9 = 683 is prime;
...
		

Crossrefs

Programs

Formula

a(n) = floor(A000978(n)/2) = ceiling(log(4)(A000979(n))); A000978(n) = 2 a(n) + 1; A000979(n) = (2*4^a(n)+1)/3. - M. F. Hasler, Aug 29 2008

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 11 2007
2 more terms from Stefan Steinerberger, Nov 24 2007
6 more terms from Dmitry Kamenetsky, Jul 12 2008
a(30)-a(40) calculated from A000978 by M. F. Hasler, Aug 29 2008

A127955 Composite numbers of the form (2^p+1)/3 where p is a prime.

Original entry on oeis.org

178956971, 45812984491, 733007751851, 46912496118443, 3002399751580331, 192153584101141163, 49191317529892137643, 787061080478274202283, 3148244321913096809131, 3223802185639011132549803
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

If p-1 is squarefree, the terms are overpseudoprimes (see A141232). - Vladimir Shevelev, Jul 15 2008

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, c]], {x, 2, 30}]; a
    Select[(2^Prime[Range[2,30]]+1)/3,CompositeQ] (* Harvey P. Dale, Feb 04 2015 *)

A127957 Numbers k such that (2^prime(k) + 1)/3 is composite.

Original entry on oeis.org

10, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, x]], {x, 2, 300}]; a
    Select[Range[2,100],!PrimeQ[(2^Prime[#]+1)/3]&] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    isok(n) = (n!=1) && !isprime((2^prime(n)+1)/3); \\ Michel Marcus, Jul 07 2018

A127956 Prime numbers p such that (2^p+1)/3 is composite.

Original entry on oeis.org

29, 37, 41, 47, 53, 59, 67, 71, 73, 83, 89, 97, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 317, 331, 337, 349, 353, 359, 367, 373
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

If p-1 is squarefree, 2a(n) is the multiplicative order of 2 modulo every divisor d>1 of (2^p+1)/3. - Vladimir Shevelev, Jul 15 2008

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, Prime[x]]], {x, 2, 100}]; a
    Select[Prime[Range[2,100]],CompositeQ[(2^#+1)/3]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 07 2021 *)

A229145 Numbers k such that (36^k + 1)/37 is prime.

Original entry on oeis.org

31, 191, 257, 367, 3061, 110503, 1145393
Offset: 1

Views

Author

Robert Price, Sep 15 2013

Keywords

Comments

All such numbers k are prime.
Note that a(6) = 110503 corresponds to (36^110503 + 1)/37, which is only a probable prime with 171975 digits.
The primes corresponding to the terms of this sequence have 1 as their last digit and an even number as their next-to-last digit. - Iain Fox, Dec 08 2017

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (36^p + 1)/37 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=isprime((36^n+1)/37) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6) = 110503 (posted by Lelio R. Paula on primenumbers.net) from Paul Bourdelais, Dec 08 2017
a(7) from Paul Bourdelais, Nov 03 2023

A127958 Numbers x such that 1 + Sum_{k=1..n} 2^(2k-1) is not prime for n=1,2,...,x.

Original entry on oeis.org

4, 7, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Numbers x such that 1 + Sum_{k=1..n} 2^(2k-1) is prime for n=1,2,...,x gives A127936.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + Sum[2^(2n - 1), {n, 1, x}]] == False, AppendTo[a, x]], {x, 1, 1000}]; a
  • PARI
    isok(x) = !isprime(1+sum(k=1, x, 2^(2*k-1))); \\ Michel Marcus, May 09 2018

A185240 Numbers k such that (35^k + 1)/36 is prime.

Original entry on oeis.org

11, 13, 79, 127, 503, 617, 709, 857, 1499, 3823, 135623, 280979
Offset: 1

Views

Author

Robert Price, Aug 29 2013

Keywords

Comments

All terms are primes. a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (35^p + 1)/36 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=isprime((35^n+1)/36) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(11)=135623 found as probable prime and added by Paul Bourdelais, Jul 05 2018
a(12) from Paul Bourdelais, Sep 13 2021
Previous Showing 11-20 of 82 results. Next