A106187
Sequence array for central binomial numbers A000984.
Original entry on oeis.org
1, 2, 1, 6, 2, 1, 20, 6, 2, 1, 70, 20, 6, 2, 1, 252, 70, 20, 6, 2, 1, 924, 252, 70, 20, 6, 2, 1, 3432, 924, 252, 70, 20, 6, 2, 1, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 184756, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1
Offset: 0
Triangle begins:
1;
2, 1;
6, 2, 1;
20, 6, 2, 1;
70, 20, 6, 2, 1;
252, 70, 20, 6, 2, 1;
...
The matrix inverse starts:
1;
-2,1;
-2,-2,1;
-4,-2,-2,1;
-10,-4,-2,-2,1;
-28,-10,-4,-2,-2,1;
-84,-28,-10,-4,-2,-2,1;
-264,-84,-28,-10,-4,-2,-2,1;
apparently related to A002420. - _R. J. Mathar_, Apr 08 2013
-
A106187 := proc(n,k)
binomial(2*(n-k),n-k) ;
end proc: # R. J. Mathar, Apr 08 2013
-
T[n_, k_] := (((2*n - 2*k)!)/((n - k)!)^2); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 11 2024 *)
Original entry on oeis.org
1, 4, 16, 58, 208, 754, 2770, 10294, 38608, 145858, 554266, 2116294, 8112466, 31201798, 120349798, 465352558, 1803241168, 7000818658, 27225405898, 106035791398, 413539586458, 1614773623318, 6312296891158, 24700292182798, 96742811049298, 379231819313254
Offset: 0
-
[3*(n+1)*Catalan(n)-2: n in [0..40]]; // G. C. Greubel, May 28 2024
-
Table[3*Binomial[2*n,n]-2, {n,0,40}] (* G. C. Greubel, May 28 2024 *)
-
a(n) = 3*binomial(2*n, n) - 2; \\ Michel Marcus, Nov 22 2013
-
[3*binomial(2*n,n) -2 for n in range(41)] # G. C. Greubel, May 28 2024
A163841
Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).
Original entry on oeis.org
1, 3, 2, 11, 8, 6, 45, 34, 26, 20, 195, 150, 116, 90, 70, 873, 678, 528, 412, 322, 252, 3989, 3116, 2438, 1910, 1498, 1176, 924, 18483, 14494, 11378, 8940, 7030, 5532, 4356, 3432, 86515, 68032, 53538
Offset: 0
Triangle begins
1;
3, 2;
11, 8, 6;
45, 34, 26, 20;
195, 150, 116, 90, 70;
873, 678, 528, 412, 322, 252;
3989, 3116, 2438, 1910, 1498, 1176, 924;
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
a := n -> SumTria(k->swing(2*k),n,true);
-
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
A181418
a(n) = A000984(n)*A000172(n), which is the term-wise product of the Central binomial coefficients and Franel numbers, respectively.
Original entry on oeis.org
1, 4, 60, 1120, 24220, 567504, 14030016, 360222720, 9513014940, 256758913840, 7051260776560, 196403499277440, 5535202897806400, 157551884911456000, 4522682234563776000, 130783762623673221120, 3806221127760278029980
Offset: 0
E.g.f.: A(x) = 1 + 4*x/2! + 60*x^2/(2!*4!) + 1120*x^3/(3!*6!) + 24220*x^4/(4!*8!) + 567504*x^5/(5!*10!) +....
where A(x)^(1/2) = 1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 +x^5/5!^3 +...
- Jason Kimberley, Table of n, a(n) for n = 0..226
- S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J. (2012).
- Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
-
Table[Binomial[2n,n]*Sum[Binomial[n,k]^3,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
{a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n,k)^3)}
-
{a(n)=(2*n)!*n!*polcoeff(sum(m=0, n, x^m/m!^3+x*O(x^n))^2, n)}
A203576
Exponential (or binomial) half-convolution of A000984 (central binomial) with itself.
Original entry on oeis.org
1, 2, 14, 56, 446, 2152, 18248, 97120, 848254, 4796552, 42454664, 250140640, 2226532712, 13516860320, 120553738144, 748819997056, 6679690686334, 42254745008840, 376638926040392, 2418457241945056, 21530200591563496, 139992790135717792, 1244418656720926624, 8178446389043428736
Offset: 0
With cbi = {1, 2, 6, 20, 70, 252, ...}
a(4) = 1*70 + 4*2*20 + 6*6^2 = 446,
a(5) = 1*252 + 5*2*70 + 10*6*20 = 2152.
-
cbi[n_] := Binomial[2*n, n]; a[n_] := Sum[Binomial[n, k]*cbi[k]*cbi[n - k], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 09 2013 *)
-
A203576(n)=sum(k=0,n\2,binomial(n,k)*A000984(k)*A000984(n-k)) \\ M. F. Hasler, Jan 13 2012
Original entry on oeis.org
2, 20, 252, 3432, 48620, 705432, 10400600, 155117520, 2333606220, 35345263800, 538257874440, 8233430727600, 126410606437752, 1946939425648112, 30067266499541040, 465428353255261088, 7219428434016265740
Offset: 0
-
[Binomial(4*n+2, 2*n+1): n in [0..20]]; // Vincenzo Librandi, May 22 2011
-
seq(binomial(4*n+2,2*n+1),n=0..20); # Emeric Deutsch, Dec 20 2004
-
Array[Binomial[4*# + 2, 2*# + 1] &, 20, 0] (* Paolo Xausa, Jul 11 2024 *)
A135757
Central binomial coefficients at triangular positions: a(n) = A000984(n(n+1)/2).
Original entry on oeis.org
1, 2, 20, 924, 184756, 155117520, 538257874440, 7648690600760440, 442512540276836779204, 103827421287553411369671120, 98527218530093856775578873054432, 377389666165540953244592352291892721700, 5825874245311064218315521996517139009907512400
Offset: 0
-
[Binomial(n*(n+1), n*(n+1) div 2): n in [0..15]]; // Vincenzo Librandi, Nov 08 2016
-
seq(binomial(n*(n+1),n*(n+1)/2),n=0..20); # Robert Israel, Nov 08 2016
-
Table[Binomial[n*(n + 1), n*(n + 1)/2], {n,0,10}] (* G. C. Greubel, Nov 07 2016 *)
-
a(n)=binomial(n*(n+1),n*(n+1)/2)
A192655
Floor-Sqrt transform of central binomial coefficients (A000984).
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 30, 58, 113, 220, 429, 839, 1644, 3224, 6333, 12454, 24516, 48307, 95263, 188003, 371276, 733660, 1450551, 2869395, 5678697, 11243247, 22269228, 44124136, 87456792, 173399153, 343896178, 682223096, 1353744488, 2686899408, 5334139244, 10591802387
Offset: 0
-
[Floor(Sqrt(Binomial(2*n,n))): n in [0..40]]; // Vincenzo Librandi, Apr 01 2012
-
Table[Floor[Sqrt[Binomial[2n,n]]],{n,0,100}]
-
makelist(floor(sqrt(binomial(2*n,n))),n,0,24);
-
a(n) = sqrtint(binomial(2*n,n)) \\ Jason Yuen, Oct 21 2024
A205946
Triangle read by rows related to A000984, central binomial coefficients.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 6, 1, 1, 33, 27, 8, 1, 1, 88, 108, 44, 10, 1, 1, 232, 405, 208, 65, 12, 1, 1, 609, 1459, 908, 350, 90, 14, 1
Offset: 0
First few rows of the triangle =
1;
1, 1;
1, 4, 1;
1, 12, 6, 1;
1, 33, 27, 8, 1;
1, 88, 108, 44, 10, 1;
1, 232, 405, 208, 65, 12, 1;
1, 609, 1459, 908, 350, 90, 14, 1;
...
Row 2 = (1, 4, 1) = row 4 of triangle A191314.
Row 3 = (1, 12, 6, 1) = finite differences of column 6 of the array shown in A205573: (1, 13, 19, 20)
A258290
Arithmetic derivative of central binomial coefficients, cf. A000984.
Original entry on oeis.org
0, 1, 5, 24, 59, 456, 1448, 6868, 19749, 69364, 236356, 1526956, 3717440, 22858340, 122553540, 474051984, 954720543, 5726109024, 19329586520, 92051285020, 319059863484, 1271796704788, 4829219746964, 29791326914640, 74372011398840, 340296661452300
Offset: 0
-
a258290 = a003415 . a000984
-
ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[0] = ad[1] = 0; a[n_] := ad[Binomial[2*n, n]]; Array[a, 26, 0] (* Amiram Eldar, Apr 13 2025 *)
Comments