cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 1129 results. Next

A106187 Sequence array for central binomial numbers A000984.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 20, 6, 2, 1, 70, 20, 6, 2, 1, 252, 70, 20, 6, 2, 1, 924, 252, 70, 20, 6, 2, 1, 3432, 924, 252, 70, 20, 6, 2, 1, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 184756, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Examples

			Triangle begins:
    1;
    2,  1;
    6,  2, 1;
   20,  6, 2, 1;
   70, 20, 6, 2, 1;
  252, 70, 20, 6, 2, 1;
  ...
The matrix inverse starts:
   1;
  -2,1;
  -2,-2,1;
  -4,-2,-2,1;
  -10,-4,-2,-2,1;
  -28,-10,-4,-2,-2,1;
  -84,-28,-10,-4,-2,-2,1;
  -264,-84,-28,-10,-4,-2,-2,1;
apparently related to A002420. - _R. J. Mathar_, Apr 08 2013
		

Crossrefs

Row sums are A006134.
Antidiagonal sums are A106188.
Cf. A000984.

Programs

  • Maple
    A106187 := proc(n,k)
        binomial(2*(n-k),n-k) ;
    end proc: # R. J. Mathar, Apr 08 2013
  • Mathematica
    T[n_, k_] := (((2*n - 2*k)!)/((n - k)!)^2); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 11 2024 *)

Formula

T(n, k) = binomial(2*(n-k), n-k).
Riordan array (1/sqrt(1-4x), x).

A134762 a(n) = 3*A000984(n) - 2.

Original entry on oeis.org

1, 4, 16, 58, 208, 754, 2770, 10294, 38608, 145858, 554266, 2116294, 8112466, 31201798, 120349798, 465352558, 1803241168, 7000818658, 27225405898, 106035791398, 413539586458, 1614773623318, 6312296891158, 24700292182798, 96742811049298, 379231819313254
Offset: 0

Views

Author

Gary W. Adamson, Nov 09 2007

Keywords

Comments

Second inverse binomial transform of the sequence = A134763, (same as a(n) but with interpolated two's).

Crossrefs

Programs

  • Magma
    [3*(n+1)*Catalan(n)-2: n in [0..40]]; // G. C. Greubel, May 28 2024
    
  • Mathematica
    Table[3*Binomial[2*n,n]-2, {n,0,40}] (* G. C. Greubel, May 28 2024 *)
  • PARI
    a(n) = 3*binomial(2*n, n) - 2; \\ Michel Marcus, Nov 22 2013
    
  • SageMath
    [3*binomial(2*n,n) -2 for n in range(41)] # G. C. Greubel, May 28 2024

Formula

G.f.: 3/sqrt(1-4*x) - 2/(1-x). - Sergei N. Gladkovskii, Nov 21 2013
From G. C. Greubel, May 28 2024: (Start)
a(n) = 3*(n+1)*A000108(n) - 2.
a(n) = (2*(2*n-1)*a(n-1) + 2*(3*n-2))/n.
E.g.f.: 3*exp(2*x)*BesselI(0, 2*x) - 2*exp(x). (End)

Extensions

More terms from Michel Marcus, Nov 22 2013

A163841 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).

Original entry on oeis.org

1, 3, 2, 11, 8, 6, 45, 34, 26, 20, 195, 150, 116, 90, 70, 873, 678, 528, 412, 322, 252, 3989, 3116, 2438, 1910, 1498, 1176, 924, 18483, 14494, 11378, 8940, 7030, 5532, 4356, 3432, 86515, 68032, 53538
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

For n >= 0, k >= 0 let T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040). Triangle read by rows.

Examples

			Triangle begins
     1;
     3,    2;
    11,    8,    6;
    45,   34,   26,   20;
   195,  150,  116,   90,   70;
   873,  678,  528,  412,  322,  252;
  3989, 3116, 2438, 1910, 1498, 1176,  924;
		

Crossrefs

Programs

  • Maple
    Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
    a := n -> SumTria(k->swing(2*k),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

A181418 a(n) = A000984(n)*A000172(n), which is the term-wise product of the Central binomial coefficients and Franel numbers, respectively.

Original entry on oeis.org

1, 4, 60, 1120, 24220, 567504, 14030016, 360222720, 9513014940, 256758913840, 7051260776560, 196403499277440, 5535202897806400, 157551884911456000, 4522682234563776000, 130783762623673221120, 3806221127760278029980
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2011

Keywords

Comments

This sequence is s_6 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Diagonal of the rational function R(x,y,z,w)=1/(1-(w*x*y+w*z+x*y+x*z+y+z)). - Gheorghe Coserea, Jul 13 2016

Examples

			E.g.f.: A(x) = 1 + 4*x/2! + 60*x^2/(2!*4!) + 1120*x^3/(3!*6!) + 24220*x^4/(4!*8!) + 567504*x^5/(5!*10!) +....
where A(x)^(1/2) = 1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 +x^5/5!^3 +...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • Mathematica
    Table[Binomial[2n,n]*Sum[Binomial[n,k]^3,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n,k)^3)}
    
  • PARI
    {a(n)=(2*n)!*n!*polcoeff(sum(m=0, n, x^m/m!^3+x*O(x^n))^2, n)}

Formula

a(n) = C(2n,n) * Sum_{k=0..n} C(n,k)^3.
E.g.f.: Sum_{n>=0} a(n)*x^n/(n!*(2*n)!) = ( Sum_{n>=0} x^n/n!^3 )^2.
From Jason Kimberley, Nov 26 2012: (Start)
1/Pi
= (2/25)*Sum_{n>=0} a(n)*(9n+2)/50^n. [Cooper, equation (5)]
= (2/25)*Sum_{n>=0} a(n)*A017185(n)/A165800(n). (End)
G.f.: 4*hypergeom([1/6, 1/3],[1],(27/2)*(1+(1-32*x)^(1/2))*(1-(1-32*x)^(1/2))^2/(3+(1-32*x)^(1/2))^3)^2/(3+(1-32*x)^(1/2)). - Mark van Hoeij, May 07 2013
Recurrence: n^3*a(n) = 2*(2*n-1)*(7*n^2 - 7*n + 2)*a(n-1) + 32*(n-1)*(2*n-3)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 2^(5*n+1) / (sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Mar 06 2014
0 = (-x^2+28*x^3+128*x^4)*y''' + (-3*x+126*x^2+768*x^3)*y'' + (-1+92*x+864*x^2)*y' + (4+96*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016

A203576 Exponential (or binomial) half-convolution of A000984 (central binomial) with itself.

Original entry on oeis.org

1, 2, 14, 56, 446, 2152, 18248, 97120, 848254, 4796552, 42454664, 250140640, 2226532712, 13516860320, 120553738144, 748819997056, 6679690686334, 42254745008840, 376638926040392, 2418457241945056, 21530200591563496, 139992790135717792, 1244418656720926624, 8178446389043428736
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2012

Keywords

Comments

In general the exponential (also known as binomial) half-convolution of a sequence {b(n), n>=0} with itself is defined by
bhat(n) := Sum_{k=0..floor(n/2)} binomial(n,k)*b(k)*b(n-k), n>=0.
The e.g.f. of the sequence {bhat(n)} is Bhat(x) = ((B(x))^2 + B2(x^2))/2, with the e.g.f. B(x) of {b(n), n>=0} and the e.g.f. B2(x) := Sum_((b(n)^2/n!)*x^n/n!, n>=0) of the scaled squares. The proof runs along the same line as the one given for the ordinary half-convolution in a comment on A201204. In fact, bhat(n)/n! is the ordinary half-convolution of the sequence {b(n)/n!, n>=0} with itself.
Here b(n) = A000984(n) = binomial(2*n,n), n>=0, B(x) = exp(2*x)*BesselI(0,2*x) (see the Abramowitz-Stegun reference and link under A008277 for BesselI, p. 375, eq. 9.6.10) and B2(x) = hypergeometric([1/2,1/2],[1,1,1],16*x).

Examples

			With cbi = {1, 2, 6, 20, 70, 252, ...}
a(4) = 1*70 + 4*2*20 + 6*6^2 = 446,
a(5) = 1*252 + 5*2*70 + 10*6*20 = 2152.
		

Crossrefs

Cf. A000984, A081085 (exponential convolution).

Programs

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*cbi(k)*cbi(n-k) n>=0, with cbi(n)=A000984(n).
E.g.f.: (exp(4*x)*BesselI(0, 2*x)^2 + hypergeom([1/2,1/2], [1,1,1],(4*x)^2))/2. See comment above.
Recurrence: (n-1)^2 * n^3 * (3*n^5 - 40*n^4 + 200*n^3 - 476*n^2 + 544*n - 241)*a(n) = 4*(n-1)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-1) + 32*(3*n^10 - 55*n^9 + 420*n^8 - 1786*n^7 + 4731*n^6 - 8232*n^5 + 9630*n^4 - 7580*n^3 + 3900*n^2 - 1194*n + 162)*a(n-2) - 256*(n-2)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^5 - 25*n^4 + 70*n^3 - 86*n^2 + 47*n - 10)*a(n-4). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 8^n / (Pi*n) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014

A099976 Bisection of A000984.

Original entry on oeis.org

2, 20, 252, 3432, 48620, 705432, 10400600, 155117520, 2333606220, 35345263800, 538257874440, 8233430727600, 126410606437752, 1946939425648112, 30067266499541040, 465428353255261088, 7219428434016265740
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(4*n+2, 2*n+1): n in [0..20]]; // Vincenzo Librandi, May 22 2011
  • Maple
    seq(binomial(4*n+2,2*n+1),n=0..20); # Emeric Deutsch, Dec 20 2004
  • Mathematica
    Array[Binomial[4*# + 2, 2*# + 1] &, 20, 0] (* Paolo Xausa, Jul 11 2024 *)

Formula

a(n) = binomial(4n+2, 2n+1). - Emeric Deutsch, Dec 20 2004
G.f.: 2*sqrt(2)/sqrt(1-16*x)/sqrt(1+sqrt(1-16*x)) = 2 + 60*x/(G(0)-30*x) where G(k)= 2*x*(4*k+3)*(4*k+5) + (2*k+3)*(k+1)- 2*x*(k+1)*(2*k+3)*(4*k+7)*(4*k+9)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 14 2012
G.f. A(x) satisfies A(x^2) = F'(x)/F(x), where F(x) = C(x)/C(-x) and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, May 15 2023
From R. J. Mathar, Jul 11 2024: (Start)
D-finite with recurrence n*(2*n+1)*a(n) -2*(4*n-1)*(4*n+1)*a(n-1)=0.
a(n) = 2*A002458(n).
G.f.: 2* 2F1(3/4,5/4; 3/2 ; 16*x).
Conjecture: A000265(a(n)) = A063079(n+1), odd part of a(n). (End)
a(n) / (2*n+2) = A024492(n). - R. J. Mathar, Jul 12 2024

Extensions

More terms from Emeric Deutsch, Dec 20 2004

A135757 Central binomial coefficients at triangular positions: a(n) = A000984(n(n+1)/2).

Original entry on oeis.org

1, 2, 20, 924, 184756, 155117520, 538257874440, 7648690600760440, 442512540276836779204, 103827421287553411369671120, 98527218530093856775578873054432, 377389666165540953244592352291892721700, 5825874245311064218315521996517139009907512400
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n*(n+1), n*(n+1) div 2): n in [0..15]]; // Vincenzo Librandi, Nov 08 2016
  • Maple
    seq(binomial(n*(n+1),n*(n+1)/2),n=0..20); # Robert Israel, Nov 08 2016
  • Mathematica
    Table[Binomial[n*(n + 1), n*(n + 1)/2], {n,0,10}] (* G. C. Greubel, Nov 07 2016 *)
  • PARI
    a(n)=binomial(n*(n+1),n*(n+1)/2)
    

Formula

a(n) = binomial(n(n+1), n(n+1)/2).
a(n) ~ 2^(n^2+n) sqrt(2/Pi) (1/n - 1/(2n^2) + 1/(8n^3) + ...). - Robert Israel, Nov 08 2016

A192655 Floor-Sqrt transform of central binomial coefficients (A000984).

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 58, 113, 220, 429, 839, 1644, 3224, 6333, 12454, 24516, 48307, 95263, 188003, 371276, 733660, 1450551, 2869395, 5678697, 11243247, 22269228, 44124136, 87456792, 173399153, 343896178, 682223096, 1353744488, 2686899408, 5334139244, 10591802387
Offset: 0

Views

Author

Emanuele Munarini, Jul 07 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Sqrt(Binomial(2*n,n))): n in [0..40]]; // Vincenzo Librandi, Apr 01 2012
    
  • Mathematica
    Table[Floor[Sqrt[Binomial[2n,n]]],{n,0,100}]
  • Maxima
    makelist(floor(sqrt(binomial(2*n,n))),n,0,24);
    
  • PARI
    a(n) = sqrtint(binomial(2*n,n)) \\ Jason Yuen, Oct 21 2024

Formula

a(n) = floor(sqrt(binomial(2*n,n))).
a(n) = A000196(A000984(n)). - Jason Yuen, Oct 21 2024

A205946 Triangle read by rows related to A000984, central binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 6, 1, 1, 33, 27, 8, 1, 1, 88, 108, 44, 10, 1, 1, 232, 405, 208, 65, 12, 1, 1, 609, 1459, 908, 350, 90, 14, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 01 2012

Keywords

Examples

			First few rows of the triangle =
1;
1, 1;
1, 4, 1;
1, 12, 6, 1;
1, 33, 27, 8, 1;
1, 88, 108, 44, 10, 1;
1, 232, 405, 208, 65, 12, 1;
1, 609, 1459, 908, 350, 90, 14, 1;
...
Row 2 = (1, 4, 1) = row 4 of triangle A191314.
Row 3 = (1, 12, 6, 1) = finite differences of column 6 of the array shown in A205573: (1, 13, 19, 20)
		

Crossrefs

Cf. A000984 (row sums), A001405, A191314, A205573, A205945 (companion).

Formula

T(n,k) = A191314(2*n,k).
Take finite differences of even numbered columns of the A205573 array from the top -> down.

A258290 Arithmetic derivative of central binomial coefficients, cf. A000984.

Original entry on oeis.org

0, 1, 5, 24, 59, 456, 1448, 6868, 19749, 69364, 236356, 1526956, 3717440, 22858340, 122553540, 474051984, 954720543, 5726109024, 19329586520, 92051285020, 319059863484, 1271796704788, 4829219746964, 29791326914640, 74372011398840, 340296661452300
Offset: 0

Views

Author

Reinhard Zumkeller, May 26 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258290 = a003415 . a000984
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[0] = ad[1] = 0; a[n_] := ad[Binomial[2*n, n]]; Array[a, 26, 0] (* Amiram Eldar, Apr 13 2025 *)

Formula

a(n) = A003415(A000984(n)).
Central terms in triangle A258197: a(n) = A258197(2*n,n).
Previous Showing 21-30 of 1129 results. Next