cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A209441 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(5*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 4, 30, 260, 2463, 24656, 256493, 2745149, 30031677, 334334789, 3775539592, 43145236171, 498018527632, 5798165437701, 68009060597311, 802908842472516, 9533509909631074, 113774810189434083, 1363985826416978416, 16418865502303963429, 198369001060550654651
Offset: 0

Views

Author

Paul D. Hanna, Apr 08 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 260*x^4 + 2463*x^5 + 24656*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^6 + (A(x)-1)*(A(x)^2-1)/A(x)^13 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^21 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^30 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^40 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^5,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15 +x^2*O(x^n)), n))}
    
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(5*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+11)/2) * Product_{k=1..n} (A(x)^k - 1).

A181997 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(3*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 2, 9, 46, 259, 1539, 9484, 59961, 386319, 2524940, 16687599, 111264335, 747080253, 5044629212, 34218868880, 232964088130, 1590660486297, 10885758313976, 74627209920879, 512254418843196, 3519150502675731, 24187028454513735, 166249089897708930
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 46*x^4 + 259*x^5 + 1539*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^4 + (A(x)-1)*(A(x)^2-1)/A(x)^9 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^15 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^22 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^30 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^3,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0,0,polcoeff(1 + serreverse(x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6 +x^2*O(x^n)),n))}
    
  • PARI
    {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0);A[#A]=-polcoeff(sum(m=1,#A,1/Ser(A)^(3*m)*prod(k=1,m,1-1/Ser(A)^k)),#A-1));A[n+1]}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+7)/2) * Product_{k=1..n} (A(x)^k - 1).

A181998 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(4*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 3, 18, 124, 935, 7443, 61510, 522467, 4532452, 39985628, 357641094, 3235846003, 29565353095, 272429349163, 2528938553028, 23629834081955, 222080711420655, 2098112946860819, 19915641133236764, 189853287434733709, 1816924035668823659, 17450483777418686431
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 124*x^4 + 935*x^5 + 7443*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^5 + (A(x)-1)*(A(x)^2-1)/A(x)^11 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^18 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^26 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^35 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^4,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0,0,polcoeff(1 + serreverse(x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10 +x^2*O(x^n)),n))}
    
  • PARI
    {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0);A[#A]=-polcoeff(sum(m=1,#A,1/Ser(A)^(4*m)*prod(k=1,m,1-1/Ser(A)^k)),#A-1));A[n+1]}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+9)/2) * Product_{k=1..n} (A(x)^k - 1).

A209442 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(6*n) * Product_{k=1..n} (1 - 1/A(x)^k).

Original entry on oeis.org

1, 1, 5, 45, 470, 5365, 64766, 813012, 10505163, 138800397, 1866712401, 25470265992, 351717013269, 4906153922941, 69030042202001, 978531875343171, 13961726654230994, 200351151383453293, 2889692388200640136, 41867983817065377259, 609091785100828769195
Offset: 0

Views

Author

Paul D. Hanna, Apr 08 2012

Keywords

Comments

Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k)
which holds for all power series G(x) such that G(0)=1.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 470*x^4 + 5365*x^5 + 64766*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^7 + (A(x)-1)*(A(x)^2-1)/A(x)^15 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^24 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^34 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^45 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^6,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Dec 01 2014 *)
    CoefficientList[1+InverseSeries[Series[x - 5*x^2 + 5*x^3 + 30*x^4 - 65*x^5 - 191*x^6 + 378*x^7 + 1557*x^8 + 103*x^9 - 8551*x^10 - 23911*x^11 - 37958*x^12 - 41831*x^13 - 34156*x^14 - 21179*x^15 - 10015*x^16 - 3571*x^17 - 933*x^18 - 169*x^19 - 19*x^20 - x^21, {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 01 2014 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 5*x^2 + 5*x^3 + 30*x^4 - 65*x^5 - 191*x^6 + 378*x^7 + 1557*x^8 + 103*x^9 - 8551*x^10 - 23911*x^11 - 37958*x^12 - 41831*x^13 - 34156*x^14 - 21179*x^15 - 10015*x^16 - 3571*x^17 - 933*x^18 - 169*x^19 - 19*x^20 - x^21 +x^2*O(x^n)), n))}
    
  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(6*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: 1+x = A(y) where y = x - 5*x^2 + 5*x^3 + 30*x^4 - 65*x^5 - 191*x^6 + 378*x^7 + 1557*x^8 + 103*x^9 - 8551*x^10 - 23911*x^11 - 37958*x^12 - 41831*x^13 - 34156*x^14 - 21179*x^15 - 10015*x^16 - 3571*x^17 - 933*x^18 - 169*x^19 - 19*x^20 - x^21.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+13)/2) * Product_{k=1..n} (A(x)^k - 1).

A214670 Triangle, read by rows of n*(n+1)/2 terms, where row n equals the coefficients in the series reversion of the function G(x,n)-1 such that: x = Sum_{m>=1} 1/G(x,n)^(n*m) * Product_{k=1..m} (1 - 1/G(x,n)^k), for n>=1.

Original entry on oeis.org

1, 1, -1, -1, 1, -2, -1, 4, 4, 1, 1, -3, 0, 11, 1, -30, -42, -26, -8, -1, 1, -4, 2, 20, -19, -100, 3, 403, 808, 861, 584, 262, 76, 13, 1, 1, -5, 5, 30, -65, -191, 378, 1557, 103, -8551, -23911, -37958, -41831, -34156, -21179, -10015, -3571, -933, -169, -19, -1
Offset: 1

Views

Author

Paul D. Hanna, Jul 25 2012

Keywords

Comments

The row sums are a signed version of A005014. [From _Olivier Gérard_, Jun 26 2012, in an email to the seqfan list, which suggested that the g.f. A(x,y) is a generalization of the g.f. for A005014.]

Examples

			Consider the family of power series G(x,n) that satisfy:
x = Sum_{m>=1} 1/G(x,n)^(n*m) * Product_{k=1..m} (1 - 1/G(x,n)^k).
Examples of sequences with g.f. G(x,n) are:
n=2: A001002 = [1, 1, 1, 3, 10, 38, 154, 654, 2871, 12925, ...];
n=3: A181997 = [1, 1, 2, 9, 46, 259, 1539, 9484, 59961, ...];
n=4: A181998 = [1, 1, 3, 18, 124, 935, 7443, 61510, 522467, ...];
n=5: A209441 = [1, 1, 4, 30, 260, 2463, 24656, 256493, 2745149, ...];
n=6: A209442 = [1, 1, 5, 45, 470, 5365, 64766, 813012, 10505163, ...]; ...
Observe that Series_Reversion( G(x,n) - 1 ) is given by the polynomials:
n=1: x;
n=2: x - x^2 - x^3;
n=3: x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6;
n=4: x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10;
n=5: x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15; ...
This triangle of coefficients in the above polynomials begins:
[1];
[1, -1, -1];
[1, -2, -1, 4, 4, 1];
[1, -3, 0, 11, 1, -30, -42, -26, -8, -1];
[1, -4, 2, 20, -19, -100, 3, 403, 808, 861, 584, 262, 76, 13, 1];
[1, -5, 5, 30, -65, -191, 378, 1557, 103, -8551, -23911, -37958, -41831, -34156, -21179, -10015, -3571, -933, -169, -19, -1];
[1, -6, 9, 40, -145, -261, 1384, 2897, -8980, -38710, -14146, 258401, 990407, 2170834, 3426095, 4198850, 4137440, 3336534, 2220430, 1221799, 554027, 205250, 61206, 14351, 2550, 323, 26, 1];
[1, -7, 14, 49, -266, -245, 3325, 2596, -36710, -70556, 281645, 1413916, 1184890, -10255248, -54012830, -156371880, -329973512, -552895722, -765517470, -895408431, -896614676, -774834055, -580511469, -377792286, -213512611, -104550572, -44163315, -15985147, -4910774, -1263620, -267378, -45321, -5918, -559, -34, -1]; ...
		

Crossrefs

Cf. A214690 (variant).

Programs

  • PARI
    {T(n,k)=local(Axy=x*y);Axy=sum(m=1,n,-x^m*prod(j=1,m,(1-(1+y)^j)/(1-x*(1+y)^j)+x*O(x^n)));polcoeff(polcoeff(Axy,n,x),k,y)}
    {for(n=1,10,for(k=1,n*(n+1)/2,print1(T(n,k),", "));print(""))}
    
  • PARI
    {a(n,p)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(p*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}
    {for(n=1,8,Tn=Vec(serreverse(sum(m=1,n*(n+1)/2,a(m,n)*x^m)+x*O(x^(n*(n+1)/2))));for(k=1,n*(n+1)/2,print1(Tn[k],", "));print(""))}

Formula

G.f.: A(x,y) = Sum_{n>=1} -x^n * Product_{k=1..n} (1 - (1+y)^k) / (1 - x*(1+y)^k).
G.f. for row n is R(y,n) = Sum_{k=1..n*(n+1)/2} y^k*T(n,k) defined by:
A(x,y) = Sum_{n>=1} x^n * R(y,n) such that:
R(y,n) = Series_Reversion( G(y,n) - 1 ) where G(y,n) satisfies:
y = Sum_{m>=1} 1/G(y,n)^(n*m) * Product_{k=1..m} (1 - 1/G(y,n)^k), for n>=1.
Row polynomials R(y,n) satisfy:
(1) R(1,n) = (-1)^(n-1) * A005014(n) for n>=1.
(2) R(-1,n) = 1 for n>=1.
(3) R'(-1,n) = 0 for n>1.
(4) R'(1,n) = A214669(n) for n>=1.

A365731 G.f. satisfies A(x) = 1 + x^4*A(x)^5*(1 + x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 5, 11, 6, 0, 35, 120, 136, 51, 285, 1330, 2310, 1771, 3036, 14950, 35100, 40950, 47502, 175392, 503440, 791120, 927520, 2272424, 7037184, 13803405, 18643560, 33997080, 98920536, 226318196, 359255325, 578590155, 1445166360, 3584815443, 6573439928
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(n+k+1, k)/(n+k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(n+k+1,k) / (n+k+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x^4*(1 + x)) ). - Seiichi Manyama, Sep 24 2024

A063018 Reversion of x - x^2 - x^3 - x^4.

Original entry on oeis.org

0, 1, 1, 3, 11, 44, 189, 850, 3951, 18832, 91542, 452075, 2261753, 11439372, 58394014, 300455892, 1556636807, 8113709916, 42518000652, 223868503324, 1183764310960, 6283573101960, 33470346433605, 178850415320010
Offset: 0

Views

Author

Olivier Gérard, Jul 05 2001

Keywords

Comments

For the reversion of x - a*x^2 - b*x^3 - c*x^4 (a!=0, b!=0, c!=0) we have a(n) = Sum(k=1,n-1, (Sum(j=0..k, a^(-n+3*k-j+1) * b^(n-3*k+2*j-1) * c^(k-j) * binomial(j,n-3*k+2*j-1) * binomial(k,j) ) ) * binomial(n+k-1,n-1))/n, n>1, a(1)=1. - Vladimir Kruchinin, May 28 2011
G.f. (with offset 1) satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^3.

Crossrefs

Cf. A001002 (reversion of y - y^2 - y^3).

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[y - y^2 - y^3 - y^4, {y, 0, 30}], x], x]
  • Maxima
    a(n):=sum((sum(binomial(j,n-3*k+2*j-1)*binomial(k,j),j,0,k))*binomial(n+k-1,n-1),k,1,n-1)/n; \\ Vladimir Kruchinin, May 28 2011
    
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec(serreverse(x-x^2-x^3-x^4)) /* show terms */ /* Joerg Arndt, May 28 2011 */

Formula

a(n) = Sum(k=1..n-1, (Sum(j=0..k, binomial(j,n-3*k+2*j-1) * binomial(k,j))) * binomial(n+k-1,n-1))/n, n>1, a(1)=1, a(0)=0. - Vladimir Kruchinin, May 28 2011
D-finite with recurrence 2552*n*(n-1)*(n-2)*a(n) -4*(n-1)*(n-2)*(2909*n-3951)*a(n-1) -2*(n-2)*(6839*n^2 -31331*n +36576)*a(n-2) +(-17563*n^3 +138510*n^2 -359633*n +308670)*a(n-3) -120*(4*n-15)*(2*n-7)*(4*n-17)*a(n-4)=0. - R. J. Mathar, Mar 24 2023

A218225 G.f. A(x) satisfies: (1 - x*A(x)) / (1 - x^2*A(x)^2)^2 = 1 - x.

Original entry on oeis.org

1, 2, 6, 23, 101, 480, 2400, 12434, 66142, 359112, 1981904, 11085198, 62696874, 357970472, 2060459256, 11943445311, 69656978837, 408466559630, 2406825745010, 14243262687023, 84618295006269, 504485687485408, 3017344000161296, 18099717207764928
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2012

Keywords

Comments

Binomial transform of A001002. - Vladimir Kruchinin, Oct 03 2014
Conjecture: a(n) is the number of permutations of [1..n+1] that avoid one of the following sets of patterns: (2134, 42153, 24153), (3124, 42153, 24153), (2143, 42135, 24135). - Alexander Burstein, Dec 20 2017
From Alexander Burstein, Sep 29 2023: (Start)
Chern et al. (see links) proves the above conjecture for (3124, 42153, 24153) as well as the following conjecture of Hong and Li:
a(n) is the number of inversion sequences of length n+1 avoiding pattern 0021. (End)

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 23*x^3 + 101*x^4 + 480*x^5 + 2400*x^6 + ...
The series reversion of x*A(x) begins:
x - 2*x^2 + 2*x^3 - 3*x^4 + 3*x^5 - 4*x^6 + 4*x^7 - 5*x^8 + 5*x^9 + ...
so A(1 - (1-x)/(1-x^2)^2) = x + 1/(1-x-x^2).
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + (1-x)*A(x))*x +
(1 + 2^2*(1-x)*A(x) + (1-x)^2*A(x)^2)*x^2/2 +
(1 + 3^2*(1-x)*A(x) + 3^2*(1-x)^2*A(x)^2 + (1-x)^3*A(x)^3)*x^3/3 +
(1 + 4^2*(1-x)*A(x) + 6^2*(1-x)^2*A(x)^2 + 4^2*(1-x)^3*A(x)^3 + (1-x)^4*A(x)^4)*x^4/4 +
(1 + 5^2*(1-x)*A(x) + 10^2*(1-x)^2*A(x)^2 + 10^2*(1-x)^3*A(x)^3 + 5^2*(1-x)^4*A(x)^4 + (1-x)^5*A(x)^5)*x^5/5 + ...
		

Programs

  • Mathematica
    Table[1/(n+1)*SeriesCoefficient[(((x-1)*(x+1)^2)/(x^2+x-1))^(n+1),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 22 2013 *)
    Flatten[{1,Table[FullSimplify[SeriesCoefficient[(2*(1-x)^(1/3)-2^(2/3)*(-11-16*x-3*Sqrt[-15+96*x])^(1/3)+2^(2/3)*(11+16*x-3*Sqrt[-15+96*x])^(1/3))/(6*(-1+x)^(1/3)*x),{x,0,n}]],{n,1,10}]}] (* Vaclav Kotesovec, Jul 06 2013 *)
    CoefficientList[Series[(-1+Cos[2/3*(ArcCot[3*Sqrt[3/5]]-ArcCot[(3*Sqrt[3])/Sqrt[5-32*x]])]+Sqrt[15]*Sin[2/3*(ArcCot[3*Sqrt[3/5]]-ArcCot[(3*Sqrt[3])/Sqrt[5-32*x]])])/(3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 06 2013 *)
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(1-x-x^2)/((1-x)*(1+x)^2 +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1);for(i=1,n,A=exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m,k)^2*(1-x)^k*A^k)+x*O(x^n))));polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(1 - (1-x)/(1-x^2)^2) = x + 1/(1-x-x^2).
(2) A(x) = (1/x) * Series_Reversion( x*(1-x-x^2)/((1-x)*(1+x)^2) ).
(3) A(x) = (1 - x*A(x)) * (1 + x*A(x))^2 / (1 - x*A(x) - x^2*A(x)^2).
(4) A(x) = exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} binomial(n,k)^2 * (1-x)^k * A(x)^k ).
Recurrence: 5*n*(n+1)*a(n) = 21*n*(2*n-1)*a(n-1) - 3*(23*n^2-46*n+24)*a(n-2) + 16*(n-2)*(2*n-3)*a(n-3). - Vaclav Kotesovec, May 22 2013
a(n) ~ 2^(5*n+6)/(27*sqrt(Pi)*5^(n+1/2)*n^(3/2)). - Vaclav Kotesovec, May 22 2013
G.f.: (-1+cos(2/3*(arccot(3*sqrt(3/5))-arccot((3*sqrt(3))/sqrt(5-32*x))))+sqrt(15)*sin(2/3*(arccot(3*sqrt(3/5))-arccot((3*sqrt(3))/sqrt(5-32*x)))))/(3*x). - Vaclav Kotesovec, Jul 06 2013

A290646 Number of dissections of an n-gon into 3- and 4-gons counted up to rotations and reflections.

Original entry on oeis.org

1, 2, 2, 7, 14, 53, 171, 691, 2738, 11720, 50486, 224012, 1005468, 4581815, 21093190, 98093226, 459986674, 2173599817, 10340539744, 49496519950, 238240366274, 1152543685463, 5601603835982, 27341242042238, 133977037982121, 658902522544060, 3251446102879398
Offset: 3

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(5) = 2 the dissections of a pentagon are: a dissection into 3 triangles; a dissection into one triangle and one quadrangle.
		

Crossrefs

Cf. A001004 (counted distinctly).

Programs

  • Mathematica
    (* See A295419 for DissectionsModDihedral. *)
    DissectionsModDihedral[Boole[# == 3 || # == 4]& /@ Range[1, 30]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
  • PARI
    \\ See A295419 for DissectionsModDihedral.
    DissectionsModDihedral(apply(v->v==3||v==4, [1..25])) \\ Andrew Howroyd, Nov 22 2017

Extensions

Terms a(16) and beyond from Andrew Howroyd, Nov 22 2017

A365725 G.f. satisfies A(x) = 1 + x^3*A(x)^4*(1 + x*A(x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 4, 9, 5, 22, 78, 91, 175, 680, 1224, 1938, 6270, 14630, 24794, 63756, 166980, 322920, 720720, 1900080, 4125888, 8803008, 22151360, 51778804, 111882100, 267682272, 645736432, 1442390092, 3346519020, 8094247798, 18657762006, 42890295734
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(k, n-3*k)*binomial(n+k+1, k)/(n+k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k) * binomial(n+k+1,k) / (n+k+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x^3*(1 + x)) ). - Seiichi Manyama, Sep 24 2024
Previous Showing 11-20 of 39 results. Next