cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 207 results. Next

A351617 Number of ways to write n as 11^w + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 4, 4, 3, 4, 1, 3, 5, 3, 5, 1, 5, 5, 1, 3, 4, 3, 6, 5, 5, 2, 4, 4, 3, 2, 8, 4, 5, 5, 5, 2, 4, 3, 5, 3, 5, 5, 5, 5, 7, 3, 5, 5, 4, 4, 3, 4, 8, 3, 8, 2, 6, 8, 3, 5, 4, 5, 10, 1, 5, 1, 4, 7, 4, 4, 7, 8, 11, 1, 3, 4, 5, 6, 7, 5, 6, 7, 7, 1, 5, 4, 10, 4, 7, 7, 4, 3, 7, 3, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 10 2022

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0.
(ii) Let c be among 3, 4, 5, 7, 8. Then each positive integer n can be written as c^w + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
This has been verified for all n = 1..3*10^5.

Examples

			a(6) = 1 with 6 = 11^0 + 0^2 + 2*1^2 + 3*1^2 + 0*1*1.
a(24) = 1 with 24 = 11^1 + 1^2 + 2*0^2 + 3*2^2 + 1*0*2.
a(71) = 1 with 71 = 11^0 + 4^2 + 2*3^2 + 3*2^2 + 4*3*2.
a(89) = 1 with 89 = 11^0 + 4^2 + 2*6^2 + 3*0^2 + 4*6*0.
a(107) = 1 with 107 = 11^1 + 8^2 + 2*4^2 + 3*0^2 + 8*4*0.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[4(n-11^w-2y^2-3z^2)+y^2*z^2],r=r+1],{w,0,Log[11,n]},{z,0,Sqrt[(n-11^w)/3]},{y,0,Sqrt[(n-11^w-3z^2)/2]}];tab=Append[tab,r],{n,1,100}];Print[tab]

A352259 Number of ways to write n as w^6 + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 2, 3, 3, 3, 2, 3, 6, 4, 3, 2, 2, 5, 5, 5, 4, 3, 4, 2, 1, 5, 5, 4, 6, 5, 3, 3, 4, 5, 4, 5, 7, 5, 4, 5, 4, 3, 3, 3, 4, 3, 3, 5, 6, 7, 6, 5, 7, 6, 4, 4, 4, 7, 5, 4, 4, 3, 7, 5, 5, 6, 6, 10, 8, 3, 3, 4, 5, 8, 4, 9, 13, 12, 8, 2, 7, 10, 9, 10, 9, 7, 5, 3, 3, 8, 5, 10, 10, 6, 7, 8, 6, 10, 9, 11, 10
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 10 2022

Keywords

Comments

Conjecture 1: (i) a(n) > 0 for every n = 0,1,2,.... Moreover, 106, 744, 5469 and 331269 are the only nonnegative integers not in the set {w + x^2 + 2*y^2 + 3*z^2 + x*y*z: w = 0,1; x,y,z = 0,1,2,...}.
(ii) Let k be one of 4, 5, 6, 7. Then each n = 0,1,2,... can be written as 10*w^k + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
(iii) Let c be among 1, 3, 4, 6, 7, and let k be 4 or 5. Then every n = 0,1,2,... can be written as c*w^k + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
(iv) Each n = 0,1,2,... can be written as 9*w^4 + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
Conjecture 2: Every n = 0,1,2,... can be written as 2*w^4 + 3*x^2 + y^2 + z^2 + x*y*z, where w,x,y,z are nonnegative integers.
We have verified Conjectures 1 and 2 for all n <= 10^5.

Examples

			a(24) = 1 with 24 = 0^6 + 4^2 + 2*2^2 + 3*0^2 + 4*2*0.
a(106) = 1 with 106 = 2^6 + 1^2 + 2*2^2 + 3*3^2 + 1*2*3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[4(n-w^6-2y^2-3z^2)+y^2*z^2],r=r+1],{w,0,n^(1/6)},{z,0,Sqrt[(n-w^6)/3]},{y,0,Sqrt[(n-w^6-3z^2)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]

A377025 Squares and cubes that are not 6th powers.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 36, 49, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936, 2025
Offset: 1

Views

Author

Chai Wah Wu, Oct 13 2024

Keywords

Comments

Squares and cubes that cannot be written as both a square and a cube.
A125643 minus the repeated terms.

Crossrefs

Programs

  • Mathematica
    lim=2025;Select[Union[Range[Floor[lim^(1/2)]]^2,Range[Floor[lim^(1/3)]]^3],!IntegerQ[#^(1/6)]&] (* James C. McMahon, Oct 16 2024 *)
  • Python
    from math import isqrt
    from sympy import integer_nthroot
    def A377025(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,3)[0]-isqrt(x)
        return bisection(f,n,n)

A069474 First differences of A069473.

Original entry on oeis.org

540, 2100, 5460, 11340, 20460, 33540, 51300, 74460, 103740, 139860, 183540, 235500, 296460, 367140, 448260, 540540, 644700, 761460, 891540, 1035660, 1194540, 1368900, 1559460, 1766940, 1992060, 2235540, 2498100, 2780460, 3083340
Offset: 0

Views

Author

Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 26 2002

Keywords

Crossrefs

Equals 60 * A005898(n+1).

Programs

  • Mathematica
    Differences[Table[(n + 1)^6 - n^6, {n, 0, 30}], 2] (* Harvey P. Dale, Dec 27 2011 *)

Formula

a(n) = 120*n^3 + 540*n^2 + 900*n + 540.
G.f.: 60*(9 - x + 5*x^2 - x^3)/(1 - x)^4. [Bruno Berselli, Feb 25 2015]

Extensions

Offset changed from 1 to 0 and added a(0)=540 by Bruno Berselli, Feb 25 2015

A069475 First differences of A069474, successive differences of (n+1)^6-n^6.

Original entry on oeis.org

1560, 3360, 5880, 9120, 13080, 17760, 23160, 29280, 36120, 43680, 51960, 60960, 70680, 81120, 92280, 104160, 116760, 130080, 144120, 158880, 174360, 190560, 207480, 225120, 243480, 262560, 282360, 302880, 324120, 346080, 368760, 392160, 416280
Offset: 0

Views

Author

Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 26 2002

Keywords

Crossrefs

Programs

Formula

a(n) = 360*n^2 + 1440*n + 1560 = 120*A056107(n+2).
G.f.: 120*(13 - 11*x + 4*x^2)/(1 - x)^3. - Bruno Berselli, Feb 25 2015

Extensions

Offset changed from 1 to 0 and added a(0)=1560 by Bruno Berselli, Feb 25 2015

A085995 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 1, 3, 8, 0, 8, 3, 5, 8, 8, 6, 9, 7, 1, 7, 3, 9, 1, 6, 3, 0, 3, 1, 8, 5, 4, 1, 2, 8, 0, 1, 5, 8, 2, 2, 6, 1, 0, 6, 0, 1, 3, 9, 6, 3, 2, 7, 5, 6, 5, 4, 2, 9, 6, 8, 0, 2, 6, 4, 8, 0, 2, 5, 7, 8, 5, 3, 0, 7, 5, 2, 2, 2, 7, 0, 7, 4, 6, 9, 1, 3, 4, 7, 9, 1, 5, 6, 0, 4, 2, 5, 1, 7, 1, 0, 1, 6, 6, 0, 1, 6, 8, 7, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0013808358869717391630318541280158226106013963275654296802648025785307522...
		

Crossrefs

Cf. A002145 (primes 4k+3), A001014 (n^6), A085966 (PrimeZeta(6)).
Cf. A085991 - A085998 (Zeta_R(2..9): same for 1/p^2, ..., 1/p^9), A086036 (same for primes 4k+1), A343626 (for primes 3k+1), A343616 (for primes 3k+2).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 250; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*6]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085995_upto(N=100)={localprec(N+3); digits((PrimeZeta43(6)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(6) = Sum_{p in A002145} 1/p^6 where A002145 = {primes p == 3 (mod 4)},
= (1/2)*Sum_{n >= 0} möbius(2*n+1)*log(b((2*n+1)*6))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A099764 a(n) = n^2 * (n+1)^2 * (n+2)^2 = 36*A001249(n-1).

Original entry on oeis.org

0, 36, 576, 3600, 14400, 44100, 112896, 254016, 518400, 980100, 1742400, 2944656, 4769856, 7452900, 11289600, 16646400, 23970816, 33802596, 46785600, 63680400, 85377600, 112911876, 147476736, 190440000, 243360000, 308002500, 386358336
Offset: 0

Views

Author

Kari Lajunen (Kari.Lajunen(AT)Welho.com), Nov 11 2004

Keywords

Examples

			a(0) = 1^3 - 1^3 = 0;
a(1) = (1+3)^3 - (1^3+3^3) = 64 - 28 = 36;
a(2) = (1+3+5)^3 - (1^3+3^3+5^3) = 729 - 153 = 576;
a(3) = (1+3+5+7)^3 - (1^3+3^3+5^3+7^3) = 4096 - 496 = 3600;
a(4) = (1+3+5+7+9)^3 - (1^3+3^3+5^3+7^3+9^3) = 15625 - 1225 = 14400; etc. - _Philippe Deléham_, Mar 10 2014
		

References

  • Jolley, Summation of Series, Dover (1961).

Crossrefs

Programs

Formula

Sum_{n>=1} 1/a(n) = Pi^2/4-39/16 = 0.029901100272... [Jolley eq 241]
G.f.: 36*x*(1+x)*(1 +8*x +x^2)/(1-x)^7 . - R. J. Mathar, Oct 03 2011
a(n) = (Sum_{k=0..n} (2*k+1))^3 - Sum_{k=0..n} (2*k+1)^3. - Philippe Deléham, Mar 10 2014
a(n) = A001014(n+1) - A002593(n+1). - Philippe Deléham, Mar 10 2014
E.g.f.: exp(x)*x*(36+252*x+330*x^2+138*x^3+21*x^4+x^5). - Stefano Spezia, Sep 04 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 - 7/16. - Amiram Eldar, Jul 02 2020

A179124 Parameters n for which the elliptic curve y^2=x^3+n has rank 4.

Original entry on oeis.org

2089, 3391, 4481, 4910, 6856, 7057, 7954, 9052, 10333, 10636, 10942, 11321, 11665, 12092, 12742, 13191, 13897, 14129, 14668, 15193, 15501, 15641, 15661, 15689, 16306, 16376, 16649
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

See A031507 for the smallest n such that rank of the elliptic curve y^2=x^3+n is some given k.

Crossrefs

Cf. A002151 (rank 0), A002153 (rank 1), A002155 (rank 2), A102833 (rank 3), A031507.

Extensions

a(9)-a(27) from Seiichi Manyama, Jul 07 2019

A179127 Numbers n for which the order of Tate-Shafarevich group Ш (Sha) of the elliptic curve y^2=x^3+n is 4.

Original entry on oeis.org

123, 174, 214, 231, 286, 362, 383, 445, 487, 510, 527, 546, 566, 571, 608, 627, 669, 706, 718, 734, 741, 762, 805, 914, 942, 965, 970, 1019, 1042, 1059, 1075, 1131, 1155, 1166, 1189, 1203, 1210, 1230, 1236, 1245, 1287, 1320, 1355, 1392, 1397, 1410, 1411
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

For n<123 the order of the Tate-Shafarevich group Ш of the elliptic curve y^2=x^3+n is 1.

Crossrefs

Extensions

Edited by N. J. A. Sloane, Jul 05 2010

A201217 Numbers such that (closest square) = (closest cube).

Original entry on oeis.org

0, 1, 2, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 28 2011

Keywords

Comments

A061023(a(n)) = 0; A053187(a(n)) = A201053(a(n));
A001014 is a subsequence (6th powers).

Programs

  • Haskell
    import Data.List (elemIndices)
    a201217 n = a201217_list !! (n-1)
    a201217_list = elemIndices 0 a061023_list
    -- Reinhard Zumkeller, Nov 28 2011
Previous Showing 101-110 of 207 results. Next