cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A103623 a(n) = n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.

Original entry on oeis.org

1, 10, 1023, 29524, 349525, 2441406, 12093235, 47079208, 153391689, 435848050, 1111111111, 2593742460, 5628851293, 11488207654, 22250358075, 41189313616, 73300775185, 125999618778, 210027483919, 340614792100, 538947368421, 833994048910, 1264758228163
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Mar 25 2005

Keywords

Crossrefs

Cf. A001017.

Programs

Formula

G.f.: (341*x^8 +11352*x^7 +77440*x^6 +153824*x^5 +99330*x^4 +19624*x^3 +968*x^2 +1)/(x -1)^10. - Colin Barker, Oct 29 2012
a(n) = (n^10-1)/(n-1) with a(1) = 10. - Arkadiusz Wesolowski, Mar 30 2013

A256581 Number of conditions on m under which m^n + (m+1)^n + ... + (m+k)^n is composite for every k>=1 (see comment).

Original entry on oeis.org

2, 3, 2, 7, 5, 7, 7, 11, 5, 7, 7, 31, 23, 11, 9, 15, 17, 31, 31, 47, 23, 15, 29, 47, 23, 15, 7, 15, 11, 31, 47, 95, 47, 15, 11, 127, 95, 47, 39, 63, 71, 63, 63, 95, 47, 31, 71, 95, 71, 47, 31, 31, 47, 63, 39, 47, 23, 15, 23, 255, 191, 127, 111, 95, 71, 127
Offset: 1

Views

Author

Vladimir Shevelev, Apr 02 2015

Keywords

Comments

We consider a(n), n>=2, conditions of the form: all numbers P_i(m) are composite, i = 1, ..., a(n), where P_i(m) is a polynomial of power n+1. It could be proved that S_k(m)= m^n + (m+1)^n + ... + (m+k)^n, as a polynomial in m of degree n+1, is divisible by k+1. Let S*_k(m) = S_k(m)/(k+1). So we have
S_k(m)=S*_k(m)*(k+1)=(T_k(m)/b(n))*(k+1), (1)
where b(n)=A064538(n) and, by the definition of A064538, T_k(m) = b(n)*S*_k(m) is a polynomial with integer coefficients.
It is clear that (1) could be prime only if k+1>=2 is a divisor of b(n). In this case we should require that (1) be a composite number. We have exactly A000005(b(n))-1 such requirements. In case of n=1, a(n)=2 (see A089306, A077654).
Remark. Sometimes some considered conditions satisfy trivially. For example, both a(3)=2 conditions for every m>=2 evidently hold, such that every number of the form m^3 + (m+1)^3 + ... +(m+k)^3 is composite.
Note that essentially this method is useful only in case of even n. Indeed, according to our comment in A001017, in case of odd n>=3 the number m^n + (m+1)^n + ... + (m+k)^n is composite for every k>=1. - Vladimir Shevelev, Apr 06 2015

Crossrefs

Cf. A000005, A064538, A089306 (a(1)=2), A256385 (a(2)=3), A256546 (a(4)=7).

Formula

For n>=2, a(n) = A000005(A064538(n))-1.

Extensions

More terms from Peter J. C. Moses, Apr 02 2015

A036087 Centered cube numbers: a(n) = (n+1)^9 + n^9.

Original entry on oeis.org

1, 513, 20195, 281827, 2215269, 12030821, 50431303, 174571335, 521638217, 1387420489, 3357947691, 7517728043, 15764279725, 31265546157, 59104406159, 107162836111, 187307353233, 316947166865
Offset: 0

Views

Author

Keywords

Comments

Never prime nor semiprime, as a(n) = (2n+1) * (n^2 + n + 1) * (n^6 + 3n^5 + 12n^4 + 19n^3 + 15n^2 + 6n + 1). - Jonathan Vos Post, Aug 26 2011
Triprimes (A014612) if n = 2, 5, 6, 14, 21, 75, 90, ... - R. J. Mathar, Aug 27 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^9+n^9: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Mathematica
    Total/@Partition[Range[0,20]^9,2,1] (* Harvey P. Dale, Jan 31 2015 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,513,20195,281827,2215269,12030821,50431303,174571335,521638217,1387420489},20] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(n+1)^9+n^9 \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(n) = A001017(n+1) + A001017(n).
G.f.: (1+x)*(x^8 + 502*x^7 + 14608*x^6 + 88234*x^5 + 156190*x^4 + 88234*x^3 + 14608*x^2 + 502*x + 1) / (x-1)^10. - R. J. Mathar, Aug 27 2011

A343289 Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^(k^9).

Original entry on oeis.org

1, 512, 19683, 393472, 1953125, 20155392, 40353607, 290936320, 581140575, 2000000000, 2357947691, 18064270080, 10604499373, 41322093568, 76886718750, 209122656384, 118587876497, 694262555136, 322687697779, 1792500000000, 1588560093162, 2414538435584, 1801152661463
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2021

Keywords

Crossrefs

A016953 a(n) = (6*n + 3)^9.

Original entry on oeis.org

19683, 387420489, 38443359375, 794280046581, 7625597484987, 46411484401953, 208728361158759, 756680642578125, 2334165173090451, 6351461955384057, 15633814156853823, 35452087835576229, 75084686279296875, 150094635296999121, 285544154243029527, 520411082988487293
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Harvey P. Dale, Jan 19 2012
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^9 = A016947(n)^3.
a(n) = 3^9*A016761(n).
Sum_{n>=0} 1/a(n) = 511*zeta(9)/10077696.
Sum_{n>=0} (-1)^n/a(n) = 277*Pi^9/162533081088. (End)

A016965 a(n) = (6*n + 4)^9.

Original entry on oeis.org

262144, 1000000000, 68719476736, 1207269217792, 10578455953408, 60716992766464, 262144000000000, 922190162669056, 2779905883635712, 7427658739644928, 18014398509481984, 40353607000000000, 84590643846578176, 167619550409708032, 316478381828866048, 572994802228616704
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^9: n in [0..20]]; // Vincenzo Librandi, May 07 2011
  • Mathematica
    (6*Range[0,20]+4)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{262144,1000000000,68719476736,1207269217792,10578455953408,60716992766464,262144000000000,922190162669056,2779905883635712,7427658739644928},20] (* Harvey P. Dale, Mar 04 2016 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^9 = A016958(n)^3.
a(n) = 2^9*A016797(n).
Sum_{n>=0} 1/a(n) = 9841*zeta(9)/10077696 - 809*Pi^9/(14285134080*sqrt(3)). (End)

A016977 a(n) = (6*n + 5)^9.

Original entry on oeis.org

1953125, 2357947691, 118587876497, 1801152661463, 14507145975869, 78815638671875, 327381934393961, 1119130473102767, 3299763591802133, 8662995818654939, 20711912837890625, 45848500718449031, 95151694449171437, 186940255267540403, 350356403707485209, 630249409724609375
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^9 = A016971(n)^3.
Sum_{n>=0} 1/a(n) = 5028751*zeta(9)/10077696 - 15371*Pi^9/(529079040*sqrt(3)). (End)

A240932 a(n) = n^9 - n^8.

Original entry on oeis.org

0, 0, 256, 13122, 196608, 1562500, 8398080, 34588806, 117440512, 344373768, 900000000, 2143588810, 4729798656, 9788768652, 19185257728, 35880468750, 64424509440, 111612119056, 187339329792, 305704134738, 486400000000, 756457187220, 1152393344256, 1722841676182
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 9-digit positive integers in base n.

Crossrefs

Programs

Formula

a(n) = n^8*(n-1) = n^9 - n^8.
a(n) = A001017(n) - A001016(n).
G.f.: 2*x^2*(x^7+374*x^6+9327*x^5+49780*x^4+78095*x^3+38454*x^2+5281*x+128) / (x-1)^10. - Colin Barker, Aug 08 2014
Sum_{n>=2} 1/a(n) = 8 - Sum_{k=2..8} zeta(k). - Amiram Eldar, Jul 05 2020

A240933 a(n) = n^10 - n^9.

Original entry on oeis.org

0, 0, 512, 39366, 786432, 7812500, 50388480, 242121642, 939524096, 3099363912, 9000000000, 23579476910, 56757583872, 127253992476, 268593608192, 538207031250, 1030792151040, 1897406023952, 3372107936256, 5808378560022, 9728000000000, 15885600931620, 25352653573632
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 10-digit positive integers in base n.

Crossrefs

Programs

  • Magma
    [n^10-n^9 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
  • Maple
    A240933:=n->n^10-n^9: seq(A240933(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Table[n^10 - n^9, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
    CoefficientList[Series[2 (256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,0,512,39366,786432,7812500,50388480,242121642,939524096,3099363912,9000000000},40] (* Harvey P. Dale, Oct 19 2022 *)
  • PARI
    vector(100, n, (n-1)^10 - (n-1)^9) \\ Derek Orr, Aug 03 2014
    

Formula

a(n) = n^9*(n-1) = n^10 - n^9.
a(n) = A008454(n) - A001017(n). - Michel Marcus, Aug 03 2014
G.f.: 2*(256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11. - Wesley Ivan Hurt, Aug 03 2014
Recurrence: a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Wesley Ivan Hurt, Aug 03 2014
Sum_{n>=2} 1/a(n) = 9 - Sum_{k=2..9} zeta(k). - Amiram Eldar, Jul 05 2020

A319358 a(n) = (10^n - 1)^9.

Original entry on oeis.org

0, 387420489, 913517247483640899, 991035916125874083964008999, 999100359916012598740083996400089999, 999910003599916001259987400083999640000899999, 999991000035999916000125999874000083999964000008999999
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2018

Keywords

Comments

Number of 9 in a(n) is 5*n-8 for n > 2.

Examples

			n|   a(n) can be divided into 9 parts for n > 3.
-+------------------------------------------------------
3|   99   1035   9   16125      874083   9   64008   999
4|  999  10035  99  160125  9  8740083  99  640008  9999
5| 9999 100035 999 1600125 99 87400083 999 6400008 99999
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(10^n - 1)^9 ; Array[a,  50, 0] (* Stefano Spezia, Sep 17 2018 *)
  • PARI
    a(n) = (10^n-1)^9;

Formula

a(n) = A002283(n)^9.
Previous Showing 21-30 of 50 results. Next