cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000584 Fifth powers: a(n) = n^5.

Original entry on oeis.org

0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000, 161051, 248832, 371293, 537824, 759375, 1048576, 1419857, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 9765625, 11881376, 14348907, 17210368, 20511149
Offset: 0

Views

Author

Keywords

Comments

Totally multiplicative sequence with a(p) = p^5 for prime p. - Jaroslav Krizek, Nov 01 2009
The binomial transform yields A059338. The inverse binomial transform yields the (finite) 0, 1, 30, 150, 240, 120, the 5th row in A019538 and A131689. - R. J. Mathar, Jan 16 2013
Equals sum of odd numbers from n^2*(n-1)+1 (A100104) to n^2*(n+1)-1 (A003777). - Bruno Berselli, Mar 14 2014
a(n) mod 10 = n mod 10. - Reinhard Zumkeller, May 10 2014
Numbers of the form a(n) + a(n+1) + ... + a(n+k) are nonprime for all n, k>=0; this can be proved by the method indicated in the comment in A256581. - Vladimir Shevelev and Peter J. C. Moses, Apr 04 2015

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A000539.

Programs

Formula

G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (x-1)^6. [Simon Plouffe in his 1992 dissertation]
Multiplicative with a(p^e) = p^(5e). - David W. Wilson, Aug 01 2001
E.g.f.: exp(x)*(x+15*x^2+25*x^3+10*x^4+x^5). - Geoffrey Critzer, Jun 12 2013
a(n) = 5*a(n-1) - 10* a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 120. - Ant King, Sep 23 2013
a(n) = n + Sum_{j=0..n-1}{k=1..4}binomial(5,k)*j^(5-k). - Patrick J. McNab, Mar 28 2016
From Kolosov Petro, Oct 22 2018: (Start)
a(n) = Sum_{k=1..n} A300656(n,k).
a(n) = Sum_{k=0..n-1} A300656(n,k). (End)
a(n) = Sum_{k=1..5} Eulerian(5, k)*binomial(n+5-k, 5), with Eulerian(5, k) = A008292(5, k), the numbers 1, 26, 66, 26, 1, for n >= 0. Worpitzki's identity for powers of 5. See. e.g., Graham et al., eq. (6, 37) (using A173018, the row reversed version of A123125). - Wolfdieter Lang, Jul 17 2019
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(5) (A013663).
Sum_{n>=1} (-1)^(n+1)/a(n) = 15*zeta(5)/16 (A267316). (End)

Extensions

More terms from Henry Bottomley, Jun 21 2001

A001015 Seventh powers: a(n) = n^7.

Original entry on oeis.org

0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171, 35831808, 62748517, 105413504, 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000, 1801088541, 2494357888, 3404825447, 4586471424, 6103515625, 8031810176
Offset: 0

Views

Author

Keywords

Comments

For n>0, (a(3*n-1)^7-a(2*n-1)^7-a(n)^7)/(7*(3*n-1)*(2*n-1)*n) = (2*A001106(n)+1)^2 (see Barisien reference, problem 173). - Bruno Berselli, Feb 01 2011
Number of the form a(n) + a(n+1) + ... + a(n+k) is never prime for all n, k>=0. This could be proved by the method indicated in the comment in A256581. - Vladimir Shevelev and Peter J. C. Moses, Apr 04 2015

References

  • E.-N. Barisien, Supplemento al Periodico di Matematica, Raffaello Giusti Editore (Livorno), July 1913, p. 135 (Problem 173).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000584 (5th powers), A013665 (zeta(7)), A275710 (eta(7)), A300785.
Cf. A003369 - A003379 (sums of 2, ..., 12 positive seventh powers).

Programs

Formula

Multiplicative with a(p^e) = p^(7e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^7 for primes p. - Jaroslav Krizek, Nov 01 2009
a(n) = 7*a(n-1) - 21* a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + 5040. - Ant King, Sep 24 2013
a(n) = n + Sum_{j=0..n-1}{k=1..6}binomial(7,k)*j^(7-k). - Patrick J. McNab, Mar 28 2016
G.f.: x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/(1-x)^8. See the Maple program. - Wolfdieter Lang, Oct 14 2016
From Kolosov Petro, Oct 22 2018: (Start)
a(n) = Sum_{k=1..n} A300785(n,k).
a(n) = Sum_{k=0..n-1} A300785(n,k). (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(7) (A013665).
Sum_{n>=1} (-1)^(n+1)/a(n) = 63*zeta(7)/64 (A275710). (End)

Extensions

More terms from James Sellers, Sep 19 2000

A001017 Ninth powers: a(n) = n^9.

Original entry on oeis.org

0, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489, 1000000000, 2357947691, 5159780352, 10604499373, 20661046784, 38443359375, 68719476736, 118587876497, 198359290368, 322687697779, 512000000000, 794280046581, 1207269217792
Offset: 0

Views

Author

Keywords

Comments

A number of the form a(n) + a(n+1) + ... + a(n+k) is never prime for all n, k>=0. It could be proved by the method indicated in the comment in A256581. - Vladimir Shevelev and Peter J. C. Moses, Apr 04 2015
A generalization. Using modified Lengyel's 2007 ideas one can prove that, for every odd r>=3, every number of the form n^r + (n+1)^r + ... + (n+k)^r is nonprime. - Vladimir Shevelev, Apr 04 2015
Composition of the cubes with themselves. - Wesley Ivan Hurt, Apr 01 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000578 (cubes), A013667 (zeta(9)), A256581.
Cf. A003391 - A004801 (sums of 2, ..., 12 positive 9th powers).

Programs

Formula

Multiplicative with a(p^e) = p^(9e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^9 for primes p. - Jaroslav Krizek, Nov 01 2009
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(x-1)^10. - R. J. Mathar, Jan 07 2011
a(n) = A000578(n)^3. - Wesley Ivan Hurt, Apr 01 2016
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(9) (A013667).
Sum_{n>=1} (-1)^(n+1)/a(n) = 255*zeta(9)/256. (End)

Extensions

More terms from James Sellers, Sep 19 2000

A064538 a(n) is the smallest positive integer such that a(n)*(1^n + 2^n + ... + x^n) is a polynomial in x with integer coefficients.

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 42, 24, 90, 20, 66, 24, 2730, 420, 90, 48, 510, 180, 3990, 840, 6930, 660, 690, 720, 13650, 1092, 378, 56, 870, 60, 14322, 7392, 117810, 7140, 210, 72, 1919190, 103740, 8190, 1680, 94710, 13860, 99330, 9240, 217350, 9660, 9870, 10080, 324870
Offset: 0

Views

Author

Floor van Lamoen, Oct 08 2001

Keywords

Comments

a(n) is a multiple of n+1. - Vladimir Shevelev, Dec 20 2011
Let P_n(x) = 1^n + 2^n + ... + x^n = Sum_{i=1..n+1}c_i*x^i. Let P^*n(x) = Sum{i=1..n+1}(c_i/(i+1))*(x^(i+1)-x). Then b(n) = (n+1)*a(n+1)is the smallest positive integer such that b(n)*P^*n(x) is a polynomial with integer coefficients. Proof follows from the recursion P(n+1)(x) = x + (n+1)*P^*n(x). As a corollary, note that, if p is the maximal prime divisor of a(n), then p<=n+1. - _Vladimir Shevelev, Dec 21 2011
The recursion P_(n+1)(x) = x + (n+1)*P^*n(x) is due to Abramovich (1973); see also Shevelev (2007). - _Jonathan Sondow, Nov 16 2015
The sum S_m(n) = Sum_{k=0..n} k^m can be written as S_m(n) = n(n+1)(2n+1)P_m(n)/a(m) for even m>1, or S_m(n) = n^2*(n+1)^2*P_m(n)/a(m) for odd m>1, where a(m) is the LCM of the denominators of the coefficients of the polynomial P_m/a(m), i.e., the smallest integer such that P_m defined in this way has integer coefficients. (Cf. Michon link.) - M. F. Hasler, Mar 10 2013
a(n)/(n+1) is squarefree, by Faulhaber's formula and the von Staudt-Clausen theorem on the denominators of Bernoulli numbers. - Kieren MacMillan and Jonathan Sondow, Nov 20 2015
a(n) equals n+1 times the product of the primes p <= (n+2)/(2+(n mod 2)) such that the sum of the base-p digits of n+1 is at least p. - Bernd C. Kellner and Jonathan Sondow, May 24 2017

Examples

			1^3 + 2^3 + ... + x^3 = (x(x+1))^2/4 so a(3)=4.
1^4 + 2^4 + ... + x^4 = x(x+1)(2x+1)(3x^2+3x-1)/30, therefore a(4)=30.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprints), p. 804, Eq. 23.1.4.

Crossrefs

Programs

  • Maple
    A064538 := n -> denom((bernoulli(n+1,x)-bernoulli(n+1))/(n+1)): # Peter Luschny, Aug 19 2011
    # Formula of Kellner and Sondow (2017):
    a := proc(n) local s; s := (p,n) -> add(i,i=convert(n,base,p));
    select(isprime,[$2..(n+2)/(2+irem(n,2))]);
    (n+1)*mul(i,i=select(p->s(p,n+1)>=p,%)) end: seq(a(n), n=0..48); # Peter Luschny, May 14 2017
  • Mathematica
    A064538[n_] := Denominator[ Together[ (BernoulliB[n+1, x] - BernoulliB[n+1])/(n+1)]];
    Table[A064538[n], {n, 0, 44}] (* Jean-François Alcover, Feb 21 2012, after Maple *)
  • PARI
    a(n) = {my(vp = Vec(bernpol(n+1, x)-bernfrac(n+1))/(n+1)); lcm(vector(#vp, k, denominator(vp[k])));} \\ Michel Marcus, Feb 07 2016
    
  • Python
    from _future_ import division
    from sympy.ntheory.factor_ import digits, nextprime
    def A064538(n):
        p, m = 2, n+1
        while p <= (n+2)//(2+ (n% 2)):
            if sum(d for d in digits(n+1,p)[1:]) >= p:
                m *= p
            p = nextprime(p)
        return m # Chai Wah Wu, Mar 07 2018
  • Sage
    A064538 = lambda n: (n+1)*mul([p for p in (2..(n+2)//(2+n%2)) if is_prime(p) and sum((n+1).digits(base=p)) >= p])
    print([A064538(n) for n in (0..48)]) # Peter Luschny, May 14 2017
    

Formula

a(n) = (n+1)*A195441(n). - Jonathan Sondow, Nov 12 2015
A001221(a(n)/(n+1)) = A001222(a(n)/(n+1)). - Kieren MacMillan and Jonathan Sondow, Nov 20 2015
rad(a(n)) = A007947(a(n)) = A144845(n) = A324369(n+1) * A324370(n+1) * A324371(n+1). - Bernd C. Kellner, Oct 12 2023

A256385 Numbers n such that 2n^2+2n+1, 3n^2+6n+5, 6n^2+30n+55 are all composite.

Original entry on oeis.org

8, 10, 11, 15, 16, 20, 26, 27, 28, 31, 33, 36, 37, 40, 41, 43, 44, 45, 46, 49, 53, 54, 55, 57, 58, 59, 61, 64, 67, 68, 71, 73, 74, 75, 77, 78, 80, 83, 88, 89, 91, 92, 93, 95, 98, 101, 103, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 118, 120, 121, 123
Offset: 1

Views

Author

Vladimir Shevelev, Mar 31 2015

Keywords

Comments

Or numbers n such that n^2 + (n+1)^2 + ... + (n+k)^2 is composite for all k>=0.
For a generalization see comment in A256581.

Crossrefs

Programs

  • Magma
    [n: n in [0..130] | not IsPrime(2*n^2+2*n+1) and not IsPrime(3*n^2+6*n+5) and not IsPrime(6*n^2+30*n+55)]; // Vincenzo Librandi, Apr 01 2015
  • Mathematica
    Select[Range[2, 200], !PrimeQ[2 #^2 + 2 # + 1] && !PrimeQ[3 #^2 + 6 # + 5] && !PrimeQ[6 #^2 + 30 # + 55] &] (* Vincenzo Librandi, Apr 01 2015 *)
    Select[Range[200],AllTrue[{2#^2+2#+1,3#^2+6#+5,6#^2+30#+55},CompositeQ]&] (* Harvey P. Dale, Jul 15 2021 *)

Extensions

More terms from Peter J. C. Moses, Mar 31 2015

A256546 Numbers n such that n^4 + (n+1)^4 + ... + (n+k)^4 is composite for every k>=0.

Original entry on oeis.org

11, 17, 18, 22, 29, 32, 35, 39, 41, 44, 46, 49, 50, 51, 53, 55, 57, 59, 60, 61, 64, 66, 69, 70, 73, 75, 76, 77, 79, 81, 86, 92, 95, 96, 101, 102, 103, 107, 112, 113, 114, 116, 117, 118, 120, 125, 131, 133, 135, 137, 138, 141, 143, 144, 147, 148, 149, 150, 151
Offset: 1

Views

Author

Keywords

Comments

Number n is in the sequence if and only if the following seven numbers are all composite:
P_1(n) = 2n^4 + 4n^3 + 6n^2 + 4n + 1,
P_2(n) = 3n^4 + 12n^3 + 30n^2 + 36n + 17,
P_3(n) = 5n^4 + 40n^3 + 180n^2 + 400n + 354,
P_4(n) = 6n^4 + 60n^3 + 330n^2 + 900n + 979,
P_5(n) = 10n^4 + 180n^3 + 1710n^2 + 8100n + 15333,
P_6(n) = 15n^4 + 420n^3 + 6090n^2 + 44100n + 127687,
P_7(n) = 30n^4 + 1740n^3 + 51330n^2 + 756900n + 4463999.
For a generalization, see comment in A256581.

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^2] | not IsPrime(2*n^4+4*n^3+6*n^2 +4*n+1) and not IsPrime(3*n^4+12*n^3+30*n^2+36*n+17) and not IsPrime(5*n^4+40*n^3+180*n^2+400*n+354) and not IsPrime(6*n^4+60*n^3+330*n^2+900*n+979) and not IsPrime(10*n^4+ 180*n^3+1710*n^2+8100*n+15333) and not IsPrime(15*n^4+ 420*n^3+6090*n^2+44100*n+127687) and not IsPrime(30*n^4+ 1740*n^3+51330*n^2+756900*n+4463999)]; // Vincenzo Librandi, Apr 03 2015

A256812 Smallest k>=1 such that n^6 + (n+1)^6 + ... + (n+k)^6 is prime or a(n)=0 if there is no such k.

Original entry on oeis.org

0, 2, 0, 2, 0, 0, 0, 0, 5, 0, 0, 6, 20, 0, 0, 5, 20, 0, 20, 0, 5, 13, 5, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 20, 0, 41, 2, 0, 5, 13, 0, 0, 0, 0, 6, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 20, 0, 20, 41, 0, 0, 0, 5, 0, 0, 0, 41, 0, 13, 20
Offset: 1

Views

Author

Keywords

Comments

Using similar arguments as in comment in A256547, we obtain that every term is 0,2,5,6,13,20,41.

Crossrefs

Showing 1-7 of 7 results.