cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 134 results. Next

A125837 Numbers whose base 8 or octal representation is 6666666......6.

Original entry on oeis.org

0, 6, 54, 438, 3510, 28086, 224694, 1797558, 14380470, 115043766, 920350134, 7362801078, 58902408630, 471219269046, 3769754152374, 30158033218998, 241264265751990, 1930114126015926, 15440913008127414, 123527304065019318, 988218432520154550, 7905747460161236406
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> 6*(8^(n-1)-1)/7); # G. C. Greubel, Aug 03 2019
  • Magma
    [6*(8^(n-1)-1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    seq(6*(8^n-1)/7, n=0..30);
  • Mathematica
    FromDigits[#,8]&/@Table[Table[6,{i}],{i,0,30}]  (* Harvey P. Dale, Mar 19 2011 *)
    6*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    vector(30, n, 6*(8^(n-1)-1)/7) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [6*(8^(n-1)-1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 6*(8^(n-1) -1)/7 = 6*A023001(n-1).
a(n) = 8*a(n-1) + 6 for n>1, a(1)=0. - Vincenzo Librandi, Oct 03 2010
G.f.: 6*x^2/( (1-x)*(1-8*x) ). - R. J. Mathar, Oct 07 2016
E.g.f.: 6*(exp(8*x) - exp(x))/7. - G. C. Greubel, Aug 03 2019
a(n) = -1 + A083068(n-1). - Alois P. Heinz, May 20 2023

A199301 a(n) = (2n+1)*8^n.

Original entry on oeis.org

1, 24, 320, 3584, 36864, 360448, 3407872, 31457280, 285212672, 2550136832, 22548578304, 197568495616, 1717986918400, 14843406974976, 127543348822016, 1090715534753792, 9288674231451648, 78812993478983680, 666532744850833408, 5620492334958379008, 47269781688880726016
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Cf. A001018 (Powers of 8), A005408 (2n+1).

Programs

Formula

a(n) = 16*a(n-1)-64*a(n-2).
G.f.: (1+8*x)/(1-8*x)^2.
a(n) = 8*(a(n-1)+2^(3*n-2)). - Vincenzo Librandi, Nov 05 2011
a(n) = A005408(n) * A001018(n). - Wesley Ivan Hurt, Oct 30 2014
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(8)*arccoth(sqrt(8)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(8)*arccot(sqrt(8)). (End)
E.g.f.: exp(8*x)*(1 + 16*x). - Stefano Spezia, May 09 2023

Extensions

a(18) corrected by Vincenzo Librandi, Nov 05 2011

A038485 Sums of 3 distinct powers of 8.

Original entry on oeis.org

73, 521, 577, 584, 4105, 4161, 4168, 4609, 4616, 4672, 32777, 32833, 32840, 33281, 33288, 33344, 36865, 36872, 36928, 37376, 262153, 262209, 262216, 262657, 262664, 262720, 266241, 266248, 266304, 266752, 294913, 294920, 294976, 295424, 299008, 2097161, 2097217
Offset: 1

Views

Author

Keywords

Crossrefs

Base-8 interpretation of A038445.

Programs

  • Mathematica
    Take[Union[Total/@Subsets[8^Range[0,10],{3}]],40] (* Harvey P. Dale, Jan 31 2016 *)
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A038485(n): return (1<<3*((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2)))+(1<<3*((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1)))+(1<<3*(m+t+1)) # Chai Wah Wu, Apr 05 2025

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A038486 Sums of 4 distinct powers of 8.

Original entry on oeis.org

585, 4169, 4617, 4673, 4680, 32841, 33289, 33345, 33352, 36873, 36929, 36936, 37377, 37384, 37440, 262217, 262665, 262721, 262728, 266249, 266305, 266312, 266753, 266760, 266816, 294921, 294977, 294984, 295425, 295432, 295488, 299009, 299016, 299072, 299520, 2097225
Offset: 1

Views

Author

Keywords

Crossrefs

Base-8 interpretation of A038446.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[8^Range[0, 6], {4}]] (* Amiram Eldar, Jul 14 2022 *)

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A087462 Generalized mod 3 multiplicative Jacobsthal sequence.

Original entry on oeis.org

1, 1, 1, 8, 5, 11, 64, 43, 85, 512, 341, 683, 4096, 2731, 5461, 32768, 21845, 43691, 262144, 174763, 349525, 2097152, 1398101, 2796203, 16777216, 11184811, 22369621, 134217728, 89478485, 178956971, 1073741824, 715827883, 1431655765, 8589934592, 5726623061
Offset: 0

Views

Author

Paul Barry, Sep 08 2003

Keywords

Comments

2^n = a(n) + A087463(n) + A087464(n) provides a decomposition of Pascal's triangle.
Multiplicative analog of A078008.

Crossrefs

Cf. A001045, A001018 (trisection), A082311 (trisection), A082365 (trisection).

Programs

  • PARI
    Vec(-(4*x^5-2*x^4+x^3+x^2+x+1)/((x+1)*(2*x-1)*(x^2-x+1)*(4*x^2+2*x+1)) + O(x^100)) \\ Colin Barker, Nov 02 2015

Formula

a(n) = Sum_{k=0..n} if (mod(n*k, 3)=0, 1, 0) * C(n, k).
a(n) = 2^n-2/3*(1-cos(2*Pi*n/3))*(A001045(n)+2*A001045(n-1)+0^n).
From Colin Barker, Nov 02 2015: (Start)
a(n) = 7*a(n-3)+8*a(n-6) for n>5.
G.f.: -(4*x^5-2*x^4+x^3+x^2+x+1) / ((x+1)*(2*x-1)*(x^2-x+1)*(4*x^2+2*x+1)).
(End)

A135778 Numbers having number of divisors equal to number of digits in base 8.

Original entry on oeis.org

1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 121, 169, 289, 361, 514, 515, 517, 519, 526, 527, 533, 535, 537, 538, 542, 543, 545, 551, 553, 554, 559, 562, 565, 566, 573, 579, 581, 583, 586, 589, 591, 597, 611, 614, 622, 623, 626, 629, 633, 634
Offset: 1

Views

Author

M. F. Hasler, Nov 28 2007

Keywords

Comments

Since 8 is not a prime, no element > 1 of the sequence A001018(k)=8^k (having k+1 digits in base 8, but much more divisors) can be member of this sequence. Also, no power of a prime less than 8 can be in the sequence, since it will always have fewer divisors than digits in base 8. However all powers of 11 up to 11^6 are in this sequence, having the same number of digits (in base 8) than the same power of 8 (since 6 = floor(log(11/8)/log(8))) and also that number of divisors (since 11 is prime).

Examples

			a(1) = 1 since 1 has 1 divisor and 1 digit (in base 8 as in any other base).
They are followed by the primes (having 2 divisors {1,p}) between 8 and 8^2 - 1 (to have 2 digits in base 8).
Then come the squares of primes (3 divisors) between 8^2 = 100_8 and 8^3 - 1 = 777_8.
These are followed by all semiprimes and cubes of primes (4 divisors) between 8^3 and 8^4 - 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],IntegerLength[#,8]==DivisorSigma[0,#]&] (* Harvey P. Dale, Mar 04 2016 *)
  • PARI
    for(d=1,4,for(n=8^(d-1),8^d-1,d==numdiv(n)&print1(n", ")))

Extensions

More terms from Harvey P. Dale, Mar 04 2016

A144072 Euler transform of powers of 8.

Original entry on oeis.org

1, 8, 100, 1144, 12906, 141848, 1532276, 16290920, 170938483, 1773107760, 18208004664, 185316171472, 1871103319988, 18756665504080, 186798940872312, 1849265718114736, 18207140415436701, 178355043327697976, 1738966407826985884, 16881111732250394440
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

8th column of A144074.
Cf. A001018 (powers of 8).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->8^j)(n): seq(a(n), n=0..40);
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(8^j), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(8^j).
a(n) ~ 8^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(8^(m-1)-1)) = 0.0772633520042039151361539536110877247158170... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - 8*x^k))). - Ilya Gutkovskiy, Nov 10 2018

A156201 Numerator of Euler(n, 1/8).

Original entry on oeis.org

1, -3, -7, 117, 497, -15123, -95767, 4116837, 34741217, -1921996323, -20273087527, 1370953667157, 17352768515537, -1386843017916723, -20479521468959287, 1888542637550347077, 31872138933891307457, -3331009898404800736323, -63243057486503656319047
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

Crossrefs

For denominators see A001018. Cf. A000813.

Programs

  • Maple
    p := proc(n) local j; 2*I*(1+add(binomial(n,j)*polylog(-j,I)*4^j, j=0..n)) end:  A156201 := n -> Im(p(n));
    seq(A156201(i), i=0..10);  # Peter Luschny, Apr 29 2013
  • Mathematica
    Table[EulerE[n, 1/8] // Numerator, {n, 0, 18}] (* Jean-François Alcover, Apr 30 2013 *)

Formula

a(n) = Im(2*i*(1+Sum_{j=0..n} (binomial(n,j)*Li_{-j}(i)*4^j))). - Peter Luschny, Apr 29 2013
G.f.: conjecture T(0)/(1+3*x), where T(k) = 1 - 16*x^2*(k+1)^2/(16*x^2*(k+1)^2 + (1+3*x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
a(n) = (-4)^n*skp(n, 3/4), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
a(n) = 2^(4*n+1)*(zeta(-n,1/16)-zeta(-n, 9/16)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
From Emanuele Munarini, Aug 22 2022: (Start)
E.g.f.: (2*e^t)/(e^(8*t)+1).
E.g.f. for the sequence of the absolute values: (cos(3*t)+sin(3*t))/cos(4*t).
|a(2*n)| = Sum_{k=0..n} binomial(2*n,2*k) (-1)^k 4^(2*n-2*k) 3^(2*k) |E(2*n-2k)|
|a(2*n+1)| = Sum_{k=0..n} binomial(2*n+1,2*k+1) (-1)^k 4^(2*n-2*k) 3^(2*k+1) |E(2*n-2*k)|
where the E(n)'s are the Euler numbers (A122045).
(End)

A156566 a(2n+2) = 9*a(2n+1), a(2n+1) = 9*a(2n) - 8^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 8, 72, 640, 5760, 51712, 465408, 4186112, 37675008, 339017728, 3051159552, 27459059712, 247131537408, 2224149233664, 20017343102976, 180155188248576, 1621396694237184, 14592546256715776, 131332916310441984
Offset: 0

Views

Author

Philippe Deléham, Feb 10 2009

Keywords

Comments

Hankel transform is 8^C(n+1,2).

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 8; a[2] = 72; a[n_] := a[n] = (-288*(n-2)*a[n-3] + 32*(n-2)*a[n-2] + 9*(n+1)*a[n-1])/(n+1); Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Nov 15 2016 *)
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 9*a[n-1] - 8^((n-1)/2)*CatalanNumber[(n- 1)/2], 9*a[n-1]]]; Table[a[n], {n,0,30}] (* G. C. Greubel, May 18 2022 *)
  • SageMath
    def a(n): # a = A156566
        if (n==0): return 1
        elif (n%2==1): return 9*a(n-1) - 8^((n-1)/2)*catalan_number((n-1)/2)
        else: return 9*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, May 18 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k)*8^k.

A190543 a(n) = 8^n - 3^n.

Original entry on oeis.org

0, 5, 55, 485, 4015, 32525, 261415, 2094965, 16770655, 134198045, 1073682775, 8589757445, 68718945295, 549754219565, 4398041728135, 35184357739925, 281474933663935, 2251799684545085, 18014398122061495, 144115186913594405, 1152921501120062575, 9223372026394422605
Offset: 0

Views

Author

Vincenzo Librandi, Jun 02 2011

Keywords

Comments

Length-n words from letters {1, 2, ..., 8} with at least one letter greater than 3. - Joerg Arndt, Jun 02 2011
All terms are odd multiples of 5, since the powers of 8 mod 10 are 8, 4, 2, 6, ... and the powers of 3 mod 10 are 3, 9, 7, 1, ... - Alonso del Arte, Feb 25 2014

Crossrefs

Programs

Formula

a(n) = 11*a(n-1) - 24*a(n-2).
a(n) = A001018(n) - A000244(n). - Michel Marcus, Feb 26 2014
From Vincenzo Librandi, Oct 05 2014: (Start)
G.f.: 5*x/((1-3*x)*(1-8*x)).
a(n+1) = 5*A016140(n). (End)
E.g.f.: 2*exp(11*x/2)*sinh(5*x/2). - Elmo R. Oliveira, Mar 31 2025
Previous Showing 71-80 of 134 results. Next