cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 424 results. Next

A066088 Number of distinct prime factors of sigma_2(n), where sigma_2(n) = A001157(n).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 2, 3, 3, 2, 4, 2, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 2, 2, 3, 4, 3, 3, 4, 4, 3, 4, 3, 5, 3, 3, 3, 3, 3, 3, 2, 5, 2, 4, 4, 2, 4, 3, 3, 5, 3, 3, 2, 4, 4, 3, 5, 4, 3, 3, 2, 4, 2, 3, 4, 4, 4, 3, 3, 4, 3, 4, 3, 5, 4, 4, 3, 5, 3, 4, 4, 3, 2, 3, 3, 3, 3
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Examples

			sigma_2(12) = 144 + 36 + 16 + 9 + 4 + 1 = 210, so a(12)=4.
		

Crossrefs

Programs

  • Mathematica
    PrimeNu[DivisorSigma[2,Range[110]]] (* Harvey P. Dale, Feb 23 2015 *)
  • PARI
    a(n) = { omega(sigma(n, 2)) } \\ Harry J. Smith, Nov 11 2009

Formula

a(n) = A001221(A001157(n)).

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Nov 11 2009

A081380 Numbers k such that the sets of prime factors (ignoring multiplicity) of A000203(k) = sigma(k) and of A001157(k) = sigma_2(k) are identical.

Original entry on oeis.org

1, 180, 1444, 12996, 23805, 36100, 52020, 60228, 64980, 68832, 95220, 301140, 324900, 344160, 481824, 1505700, 1718721, 1720800, 2275758, 2409120, 3755844, 6874884, 6879645, 7965153, 8593605, 11378790, 12045600, 15930306, 17405892
Offset: 1

Views

Author

Labos Elemer, Mar 26 2003

Keywords

Examples

			n = 1444 = 2^2*19^2, sigma(1444) = 2667 = 3*7*127, sigma_2(1444) = 2744343 = 3^2*7^4*127, common factor set = {3,7,127}.
		

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; Do[s=ba[DivisorSigma[1, n]]; s5=ba[DivisorSigma[2, n]]; If[Equal[s, s5], Print[n]], {n, 1, 1000000}]
  • PARI
    is(n)=factor(sigma(n))[,1]==factor(sigma(n,2))[,1] \\ Charles R Greathouse IV, Feb 19 2013

Extensions

More terms from Lekraj Beedassy, Jul 18 2008
a(16)-a(29) from Donovan Johnson, May 24 2009

A082902 a(n) = gcd(2^n, sigma(2,n)) = gcd(A000079(n), A001157(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 1, 4, 4, 2, 2, 4, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 1, 2, 1, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Labos Elemer, Apr 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^IntegerExponent[DivisorSigma[2, n], 2]; Array[a, 100] (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    A082902(n) = gcd(2^n, sigma(n, 2)); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = A006519(A001157(n)). - Antti Karttunen, Sep 27 2018
Multiplicative with a(2^e) = 1, and a(p^e) = A006519(e+1) for an odd prime p. - Amiram Eldar, Oct 01 2023

A099978 Bisection of A001157: a(n) = sigma_2(2n-1).

Original entry on oeis.org

1, 10, 26, 50, 91, 122, 170, 260, 290, 362, 500, 530, 651, 820, 842, 962, 1220, 1300, 1370, 1700, 1682, 1850, 2366, 2210, 2451, 2900, 2810, 3172, 3620, 3482, 3722, 4550, 4420, 4490, 5300, 5042, 5330, 6510, 6100, 6242, 7381, 6890, 7540, 8420, 7922, 8500
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Examples

			From _M. F. Hasler_, Mar 06 2017: (Start)
a(1) = sigma_2(2*1-1) = 1.
a(2) = sigma_2(2*2-1) = 1 + 3^2 = 10.
a(5) = sigma_2(2*5-1) = 1 + 3^2 + 9^2 = 91. (End)
G.f.: A(x) = x + 10*x^2 + 26*x^3 + 50*x^4 + 91*x^5 + 122*x^6 + 170*x^7 + 260*x^8 + 290*x^9 + 362*x^10 + 500*x^11 + 530*x^12 + ... where A(x) = x/(1 - x) + 3^2*x^2/(1 - x^3) + 5^2*x^3/(1 - x^5) + 7^2*x^4/(1 - x^7) + 9^2*x^5/(1 - x^9) + .... - _Paul D. Hanna_, Jun 23 2025
		

Crossrefs

Cf. A099979(n) = sigma_2(2n), the other bisection of A001157.
Cf. A283224.

Programs

Formula

a(n) = A001157(2n-1) = sigma_2(2n-1). - M. F. Hasler, Mar 06 2017
Sum_{k=1..n} a(k) ~ 7*zeta(3)*n^3/6. - Vaclav Kotesovec, Aug 07 2022
G.f.: Sum_{n>=1} (2*n-1)^2 * x^n / (1 - x^(2*n-1)). - Paul D. Hanna, Jun 23 2025

Extensions

More terms from Emeric Deutsch, Dec 07 2004
Edited by M. F. Hasler, Mar 06 2017

A175199 a(n) is the smallest integer k such that sigma_2(k) = sigma_2(k + 2n), where sigma_2(k) is the sum of squares of divisors of k (A001157).

Original entry on oeis.org

24, 430, 645, 860, 120, 864, 168, 1720, 1935, 10790, 264, 2580, 2795, 1570, 16185, 3440, 408, 3870, 456, 21580, 2355, 4730, 552, 5160, 600, 5590, 5805, 3140, 696, 4320, 744, 6880, 7095, 1248, 840, 7740, 888, 8170, 8385, 43160, 984, 4710, 1032, 9460
Offset: 1

Views

Author

Michel Lagneau, Mar 03 2010

Keywords

Comments

The equation sigma_2(n) = sigma_2(n + p) has infinitely many solutions where p >= 2 and p is even (J. M. De Koninck).

Examples

			For n=1, sigma_2(24) = sigma_2(26) = 850.
For n=2, sigma_2(430) = sigma_2(434) = 240500.
For n=3, sigma_2(645) = sigma_2(651) = 481000.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 2 by 2 to 200 do :indic:=0:for n from 1 to 100000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+k):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 and indic=0 then print(k):print(n):indic:=1:else fi:od:od:

Extensions

Edited by Robert Israel, Aug 02 2024

A175705 Convolution square of A001157 (the sum of squared divisors).

Original entry on oeis.org

1, 10, 45, 142, 362, 780, 1561, 2762, 4808, 7570, 12034, 17482, 26072, 35884, 50909, 67012, 92111, 116950, 155720, 193564, 250914, 304244, 389286, 461654, 578952, 680944, 839304, 970094, 1188924, 1354164, 1637145, 1858344, 2215866, 2485068
Offset: 1

Views

Author

Michel Lagneau, Aug 10 2010

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): T:=array(1..200):for p from 1 to 200 do: liste:=divisors(p) :s2:=sum(liste[i]^2,i=1..nops(liste)):T[p] :=s2 :od : for n from 1 to 100 do: printf(`%d, `, sum (T[k]*T[n+1-k],k=1..n)):od:
  • Mathematica
    a[n_] := Sum[DivisorSigma[2, k] * DivisorSigma[2, n + 1 - k], {k, 1, n}]; Array[a, 34] (* Amiram Eldar, Jul 31 2019 *)

Formula

a(n) = Sum_{k=1..n} A001157(k)* A001157(n+1-k).
G.f.: (1/x)*(Sum_{k>=1} k^2*x^k/(1 - x^k))^2. - Ilya Gutkovskiy, Jan 01 2017
Conjecture: Sum_{k=1..n} a(k) ~ zeta(3)^2 * n^6 / 180. - Vaclav Kotesovec, Aug 20 2025

Extensions

Definition slightly rephrased by R. J. Mathar, Aug 19 2010

A361063 Multiplicative with a(p^e) = sigma_2(e), where sigma_2 = A001157.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 10, 5, 1, 1, 5, 1, 1, 1, 21, 1, 5, 1, 5, 1, 1, 1, 10, 5, 1, 10, 5, 1, 1, 1, 26, 1, 1, 1, 25, 1, 1, 1, 10, 1, 1, 1, 5, 5, 1, 1, 21, 5, 5, 1, 5, 1, 10, 1, 10, 1, 1, 1, 5, 1, 1, 5, 50, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 5, 5, 1, 1, 1, 21, 21, 1, 1, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[2, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> sigma(x, 2), factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import factorint, divisor_sigma
    def A361063(n): return prod(divisor_sigma(e,2) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
    

Formula

Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_2(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_2(e) - sigma_2(e-1)) / p^e) = 11.343154585178523783556367128387762286267199879648613456124659589127638983...

A364268 a(n) = Sum_{k=1..n} k^2*sigma_2(k), where sigma_2 is A001157.

Original entry on oeis.org

1, 21, 111, 447, 1097, 2897, 5347, 10787, 18158, 31158, 45920, 76160, 104890, 153890, 212390, 299686, 383496, 530916, 661598, 879998, 1100498, 1395738, 1676108, 2165708, 2572583, 3147183, 3744963, 4568163, 5276285, 6446285, 7370767, 8768527, 10097107
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n^2*DivisorSigma[2, n], {n, 1, 33}]] (* Amiram Eldar, Oct 20 2023 *)
  • PARI
    f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
    a(n, s=2, t=2) = sum(k=1, n, k^(s+t)*f(n\k, s));
    
  • Python
    def A364268(n): return sum(k**4*(m:=n//k)*(m+1)*((m<<1)+1)//6 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A364268(n): return (((s:=isqrt(n))*(s+1)*(2*s+1))**2*(1-3*s*(s+1))//6 + sum((q:=n//k)*(q+1)*(2*q+1)*k**2*(5*k**2+3*q*(q+1)-1) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^4 * A000330(floor(n/k)).
a(n) ~ (zeta(3)/5) * n^5. - Amiram Eldar, Oct 20 2023

A066293 a(n) = A000203(n)^2 - A001157(n) = sigma(n)^2 - sigma_2(n).

Original entry on oeis.org

0, 4, 6, 28, 10, 94, 14, 140, 78, 194, 22, 574, 26, 326, 316, 620, 34, 1066, 38, 1218, 524, 686, 46, 2750, 310, 914, 780, 2086, 58, 3884, 62, 2604, 1084, 1466, 1004, 6370, 74, 1790, 1436, 5890, 82, 6716, 86, 4494, 3718, 2534, 94, 11966, 798, 5394, 2284
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n]^2 - DivisorSigma[2, n]; Array[a, 50] (* Amiram Eldar, Jul 31 2019 *)
  • PARI
    a(n) = sigma(n)^2 - sigma(n, 2); \\ Michel Marcus, Mar 22 2020

Formula

For p prime, a(p) = 2p.
From Amiram Eldar, Mar 17 2024: (Start)
a(n) = A072861(n) - A001157(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/2 = 0.601028451579... . (End)

A066294 a(n) = A000203(n)^2 - A001157(n) - 2n = sigma(n)^2 - sigma_2(n) - 2n.

Original entry on oeis.org

-2, 0, 0, 20, 0, 82, 0, 124, 60, 174, 0, 550, 0, 298, 286, 588, 0, 1030, 0, 1178, 482, 642, 0, 2702, 260, 862, 726, 2030, 0, 3824, 0, 2540, 1018, 1398, 934, 6298, 0, 1714, 1358, 5810, 0, 6632, 0, 4406, 3628, 2442, 0, 11870, 700, 5294, 2182, 5930, 0, 10192, 1902, 10038, 2666, 3774, 0, 22644, 0, 4282, 6140, 10540, 2506
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Comments

For primes p, a(p) = 0, otherwise positive, except for n = 1 where it is negative.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1,n]^2 - DivisorSigma[2,n] - 2n; Array[a, 65] (* Amiram Eldar, Jul 31 2019 *)
  • PARI
    a(n) = sigma(n)^2 - sigma(n, 2) - 2*n; \\ Michel Marcus, Mar 22 2020
Previous Showing 21-30 of 424 results. Next