cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).

Original entry on oeis.org

1, 34, 278, 1335, 4461, 12513, 29321, 63146, 122439, 225597, 386649, 644557, 1015851, 1570515, 2333259, 3415660, 4835518, 6792187, 9268287, 12572469, 16673621, 21988337, 28424681, 36677981, 46446732, 58699434, 73107634, 90873690, 111384840, 136555392
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 30 2014

Keywords

Crossrefs

Cf. A001160 (sigma_5).
Cf. A024916: Partial sums of sigma(n) = A000203(n).
Cf. A064602: Partial sums of sigma_2(n) = A001157(n).
Cf. A064603: Partial sums of sigma_3(n) = A001158(n).
Cf. A064604: Partial sums of sigma_4(n) = A001159(n).

Programs

  • Magma
    [(&+[DivisorSigma(5,j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    with(numtheory): A248076:=n->add(sigma[5](i), i=1..n): seq(A248076(n), n=1..50);
  • Mathematica
    Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
    Accumulate[DivisorSigma[5, Range[30]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ Michel Marcus, Sep 30 2014
    
  • Python
    from math import isqrt
    def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
a(n) ~ Zeta(6) * n^6 / 6. - Vaclav Kotesovec, Sep 02 2018
a(n) ~ Pi^6 * n^6 / 5670. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^5 * floor(n/k). - Daniel Suteu, Nov 08 2018

A066112 Numbers k such that sigma_4(k)/sigma_2(k) is an integer but not a prime.

Original entry on oeis.org

1, 16, 36, 48, 49, 64, 81, 100, 121, 144, 162, 180, 196, 225, 245, 256, 324, 361, 400, 432, 441, 484, 500, 529, 576, 605, 625, 648, 676, 729, 784, 841, 900, 931, 980, 1024, 1089, 1156, 1200, 1225, 1280, 1296, 1369, 1444, 1521, 1600, 1620, 1681, 1764, 1805
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Examples

			The sequence includes squares, twice squares (such as 162 and 648), and other numbers (such as 48 and 180). The sigma_4/sigma_2 quotients usually have more than one distinct prime factor. Exception: sigma_4(48)/sigma_2(48) = 5732210/3410 = 1681 = 41^2.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[4, n]; z=DivisorSigma[2, n]; If[IntegerQ[s/z]&&!PrimeQ[s/z], Print[n]], {n, 1, 10000}]
  • PARI
    isok(k) = { my(f=sigma(k, 4)/sigma(k, 2)); !frac(f) && !isprime(f) } \\ Harry J. Smith, Feb 01 2010

Extensions

Edited by Jon E. Schoenfield, Dec 24 2016

A297843 a(n) = Sum_{d|n} max(d, n/d)^4.

Original entry on oeis.org

1, 32, 162, 528, 1250, 2754, 4802, 8704, 13203, 21250, 29282, 44576, 57122, 81634, 102500, 139520, 167042, 225666, 260642, 341250, 393764, 497794, 559682, 715808, 781875, 971074, 1076004, 1310946, 1414562, 1743842, 1847042, 2236416, 2401124, 2839714, 3006052
Offset: 1

Views

Author

Seiichi Manyama, Jan 07 2018

Keywords

Crossrefs

Sum_{d|n} max(d, n/d)^k: A117003 (k=1), A297841 (k=2), A297842 (k=3), this sequence (k=4), A297844 (k=5).

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (Max[#, n/#]^4 & /@ d)]; Array[f, 35] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    {a(n) = sumdiv(n, d, max(d, n/d)^4)}

Formula

a(n) + A297794(n) = 2*A001159(n).
Sum_{k=1..n} a(k) ~ (2*zeta(5)/5) * n^5. - Amiram Eldar, Jan 12 2025

A300909 Sum of 4th powers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 82, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 15 2018

Keywords

Comments

Multiplicative with a(p^e) = (p^(4*(1+floor(e/4)))-1)/(p^4-1). - Robert Israel, Mar 15 2018

Examples

			a(16) = 17 because 16 has 5 divisors {1, 2, 4, 8, 16} among which 2 divisors {1, 16} are 4th powers and 1 + 16 = 17.
L.g.f.: L(x) = x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + x^6/6 + x^7/7 + x^8/8 + x^9/9 + x^10/10 + x^11/11 + x^12/12 + x^13/13 + x^14/14 + x^15/15 + 17*x^16/16 + x^17/17 + ...
exp(L(x)) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + 2*x^16 + 2*x^17 + ... + A046042(n)*x^n + ...
		

Crossrefs

Cf. A000583, A001159, A035316, A046042, A046100 (positions of ones), A063775, A113061.

Programs

  • Maple
    N:= 1000: # for a(1)..a(N)
    V:= Vector(N,1):
    for m from 2 to floor(N^(1/4)) do
      R:= [seq(i,i=m^4 .. N, m^4)];
      V[R]:= map(`+`,V[R],m^4)
    od:
    convert(V,list); # Robert Israel, Mar 15 2018
  • Mathematica
    Table[DivisorSum[n, # &, IntegerQ[#^(1/4)] &], {n, 112}]
    nmax = 112; Rest[CoefficientList[Series[Sum[k^4 x^k^4/(1 - x^k^4), {k, 1, 10}], {x, 0, nmax}], x]]
    nmax = 112; Rest[CoefficientList[Series[-Log[Product[(1 - x^k^4), {k, 1, 10}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (p^(4*(1 + Floor[e/4])) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*ispower(d, 4)); \\ Michel Marcus, Mar 15 2018

Formula

G.f.: Sum_{k>=1} k^4*x^(k^4)/(1 - x^(k^4)).
L.g.f.: -log(Product_{k>=1} (1 - x^(k^4))) = Sum_{n>=1} a(n)*x^n/n.
D.g.f.: zeta(s)*zeta(4s-4). - Robert Israel, Mar 15 2018
Sum_{k=1..n} a(k) ~ zeta(5/4)*n^(5/4)/5 - n/2. - Vaclav Kotesovec, Dec 01 2020

A347142 Sum of 4th powers of divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 17, 1, 17, 1, 17, 1, 98, 1, 17, 82, 17, 1, 98, 1, 273, 82, 17, 1, 354, 1, 17, 82, 273, 1, 723, 1, 273, 82, 17, 626, 354, 1, 17, 82, 898, 1, 1394, 1, 273, 707, 17, 1, 1650, 1, 642, 82, 273, 1, 1394, 626, 2674, 82, 17, 1, 2275, 1, 17, 2483, 273, 626
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # < Sqrt[n] &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[k^4 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A347142(n) = { my(s=0); fordiv(n,d,if((d^2)>=n,return(s)); s += (d^4)); }; \\ Antti Karttunen, Aug 19 2021

Formula

G.f.: Sum_{k>=1} k^4 * x^(k*(k + 1)) / (1 - x^k).

A347143 Sum of 4th powers of divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 17, 1, 17, 1, 17, 82, 17, 1, 98, 1, 17, 82, 273, 1, 98, 1, 273, 82, 17, 1, 354, 626, 17, 82, 273, 1, 723, 1, 273, 82, 17, 626, 1650, 1, 17, 82, 898, 1, 1394, 1, 273, 707, 17, 1, 1650, 2402, 642, 82, 273, 1, 1394, 626, 2674, 82, 17, 1, 2275, 1, 17, 2483, 4369, 626
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # <= Sqrt[n] &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[k^4 x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A347143(n) = { my(s=0); fordiv(n,d,if((d^2)>n,return(s)); s += (d^4)); (s); }; \\ Antti Karttunen, Aug 19 2021

Formula

G.f.: Sum_{k>=1} k^4 * x^(k^2) / (1 - x^k).

A363608 Expansion of Sum_{k>0} x^(4*k)/(1-x^k)^5.

Original entry on oeis.org

0, 0, 0, 1, 5, 15, 35, 71, 126, 215, 330, 511, 715, 1036, 1370, 1891, 2380, 3201, 3876, 5061, 6020, 7645, 8855, 11207, 12655, 15665, 17676, 21512, 23751, 29000, 31465, 37851, 41250, 48756, 52400, 62602, 66045, 77691, 82966, 96521, 101270, 118966, 123410, 143397
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, 4] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^k)^5)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) - 6*sigma(f, 3) + 11*sigma(f, 2) - 6*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d,4).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_4(n) - 6*sigma_3(n) + 11*sigma_2(n) - 6*sigma_1(n)) / 24.
Dirichlet g.f.: zeta(s) * (zeta(s-4) - 6*zeta(s-3) + 11*zeta(s-2) - 6*zeta(s-1)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

A046840 Numbers k such that the number of divisors of k divides the sum of the 4th powers of the divisors of k.

Original entry on oeis.org

1, 3, 4, 5, 7, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 100, 101, 103, 105, 107, 108, 109, 111
Offset: 1

Views

Author

Keywords

Comments

A020486 is very similar to this sequence, but it does not include the following values below 1000 (which this sequence does include): {16, 80, 81, 176, 304, 324, 400, 405, 464, 496, 656, 784, 880, 891, 944, 976}.

Examples

			k = 16 is a term since it has 5 divisors, and sigma_4(16) = 69905 is divisible by 5.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..120] | IsZero(DivisorSigma(4, n) mod NumberOfDivisors(n))]; // Bruno Berselli, Apr 11 2013
    
  • Mathematica
    Select[Range[120], Divisible[DivisorSigma[4, #], DivisorSigma[0, #]] &] (* Amiram Eldar, Mar 17 2025 *)
  • PARI
    isok(n) = sigma(n, 4) % numdiv(n) == 0; \\ Michel Marcus, May 13 2018

A236329 a(n) = sigma(n,1) * sigma(n,2) * ... * sigma(n,n).

Original entry on oeis.org

1, 15, 1120, 2929563, 38464354656, 80529415686720000, 538252697895729090560000, 1045011472134222568417452736171875, 14983270528936392555878952946810076508388237, 30023920804570215919584229032152609459437167079578240000
Offset: 1

Views

Author

Colin Barker, Jan 22 2014

Keywords

Comments

sigma(n, k) is the sum of the k-th powers of the divisors of n.

Examples

			a(4) = sigma(4,1)*sigma(4,2)*sigma(4,3)*sigma(4,4) = 7*21*73*273 = 2929563.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory): seq(product(sigma[k](n), k = 1..n), n = 1..10); # Vaclav Kotesovec, Aug 20 2019
  • Mathematica
    Table[Times@@DivisorSigma[Range[n],n],{n,10}] (* Harvey P. Dale, Oct 21 2017 *)
  • PARI
    vector(12, n, prod(k=1, n, sigma(n, k)))

Formula

log(a(n)) ~ n*(n+1)*log(n)/2. - Vaclav Kotesovec, Aug 21 2019

A347158 Sum of 4th powers of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 16, 0, 16, 0, 16, 0, 97, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 722, 0, 16, 81, 16, 625, 97, 0, 16, 81, 641, 0, 97, 0, 16, 706, 16, 0, 97, 0, 641, 81, 16, 0, 97, 625, 2417, 81, 16, 0, 722, 0, 16, 2482, 16, 625, 97, 0, 16, 81, 3042
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k]^4 x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^4 * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).
Previous Showing 41-50 of 73 results. Next