cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 156 results. Next

A371446 Number of carry-connected integer partitions whose distinct parts have no binary containments.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 4, 8, 4, 7, 7, 12, 10, 14, 12, 15, 19, 19, 21, 32, 27, 33, 40, 46, 47, 61, 52, 75, 89, 95, 104, 129, 129, 149, 176, 188, 208, 249, 257, 296, 341, 373, 394, 476, 496, 552
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

These partitions are ranked by A371445.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A binary carry of two positive integers is an overlap of binary indices. An integer partition is binary carry-connected iff the graph with one vertex for each part and edges corresponding to binary carries is connected.
A binary containment is a containment of binary indices. For example, the numbers {3,5} have binary indices {{1,2},{1,3}}, so there is a binary carry but not a binary containment.

Examples

			The a(12) = 8 through a(14) = 7 partitions:
  (12)             (13)                         (14)
  (6,6)            (10,3)                       (7,7)
  (9,3)            (5,5,3)                      (9,5)
  (4,4,4)          (1,1,1,1,1,1,1,1,1,1,1,1,1)  (6,5,3)
  (6,3,3)                                       (5,3,3,3)
  (3,3,3,3)                                     (2,2,2,2,2,2,2)
  (2,2,2,2,2,2)                                 (1,1,1,1,1,1,1,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

The first condition (carry-connected) is A325098.
The second condition (stable) is A325109.
Ranks for binary indices of binary indices are A326750 = A326704 /\ A326749.
Ranks for prime indices of prime indices are A329559 = A305078 /\ A316476.
Ranks for prime indices of binary indices are A371294 = A087086 /\ A371291.
Ranks for binary indices of prime indices are A371445 = A325118 /\ A371455.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n], stableQ[bix/@Union[#],SubsetQ]&&Length[csm[bix/@#]]<=1&]],{n,0,30}]

A177777 E.g.f. satisfies: L(x) = x*Sum_{n>=0} (1/n!)*Product_{k=0..n-1} L(2^k*x).

Original entry on oeis.org

1, 2, 12, 152, 3640, 160224, 13063792, 2012388736, 596666619648, 344964885948160, 392058233038486784, 880255154481199466496, 3916538634445633156373504, 34603083354426212294072477696
Offset: 1

Views

Author

Paul D. Hanna, May 19 2010

Keywords

Comments

An analog of the LambertW function.
A053549 without the leading term. - R. J. Mathar, May 24 2010

Examples

			E.g.f.: L(x) = x + 2*x^2/2! + 12*x^3/3! + 152*x^4/4! + 3640*x^5/5! +...
which is invariant under the series:
L(x)/x = 1 + L(x) + L(x)L(2x)/2! + L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! +...
Let B(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 64*x^4/4! + 1024*x^5/5! +...
so that log(B(x)) = x + x^2/2! + 4*x^3/3! + 38*x^4/4! + 728*x^5/5! +...+ A001187(n)*x^n/n! +...
then L(x) = x*d/dx log(B(x)) which also satisfies:
1/B(x) = 1 - L(x) + L(x)L(2x)/2! - L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! -+...
		

Programs

  • PARI
    {a(n,r=1)=local(A=x+x^2);for(i=1,n,A=x*sum(m=0,n,r^m/m!*prod(k=0,m-1,subst(A,x,2^k*x+x*O(x^n)))));n!*polcoeff(A,n)}

Formula

a(n) = n*A001187(n), where A001187(n) is the number of connected labeled graphs with n nodes.
Let B(x) = Sum_{n>=0} 2^(n(n-1)/2)*x^n/n! then
. L(x) = x*d/dx log(B(x)) = x*B'(x)/B(x) and
. 1/B(x) = Sum_{n>=0} (-1)^n/n!*Product_{k=0..n-1} L(2^k*x).

A223894 Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 6, 3, 4, 32, 12, 16, 38, 320, 80, 80, 190, 728, 6144, 960, 640, 1140, 4368, 26704, 229376, 21504, 8960, 10640, 30576, 186928, 1866256, 16777216, 917504, 229376, 170240, 326144, 1495424, 14930048, 251548592, 2415919104, 75497472, 11010048, 4902912, 5870592, 17945088, 134370432, 2263937328, 66296291072
Offset: 1

Views

Author

Geoffrey Critzer, Mar 28 2013

Keywords

Examples

			Triangle T(n,k) begins:
       1;
       2,     1;
       6,     3,    4;
      32,    12,   16,    38;
     320,    80,   80,   190,   728;
    6144,   960,  640,  1140,  4368,  26704;
  229376, 21504, 8960, 10640, 30576, 186928, 1866256;
  ...
		

Crossrefs

Cf. A001187, A006125, A123903 (column 1), A125207 (row sums), A182166 (column 2).

Programs

  • Magma
    function b(n) // b = A001187
      if n eq 0 then return 1;
      else return 2^Binomial(n,2) - (&+[Binomial(n-1,j-1)*2^Binomial(n-j,2)*b(j): j in [0..n-1]]);
      end if; return b;
    end function;
    A223894:= func< n,k | Binomial(n,k)*2^Binomial(n-k,2)*b(k) >;
    [A223894(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2022
    
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid
  • SageMath
    @CachedFunction
    def b(n): # b = A001187
        if (n==0): return 1
        else: return 2^binomial(n,2) - sum(binomial(n-1,j-1)*2^binomial(n-j,2)*b(j) for j in range(n))
    def A223894(n,k): return binomial(n,k)*2^binomial(n-k,2)*b(k)
    flatten([[A223894(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2022

Formula

E.g.f. for column k: A001187(n)*x^n/n!*A(x) where A(x) is the e.g.f. for A006125.
Sum_{k=0..n} T(n, k) = A125207(n).
T(n, 1) = A123903(n).
T(n, 2) = A182166(n).
T(n, n) = A001187(n). - G. C. Greubel, Oct 03 2022

A274805 The logarithmic transform of sigma(n).

Original entry on oeis.org

1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The logarithmic transform [LOG] transforms an input sequence b(n) into the output sequence a(n). The LOG transform is the inverse of the exponential transform [EXP], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell’s formula. For information about the EXP transform see A274804. The logarithmic transform is related to the inverse multinomial transform, see A274844 and the first formula.
The definition of the LOG transform, see the second formula, shows that n >= 1. To preserve the identity EXP[LOG[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the LOG transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the logarithmic transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the logarithmic transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A001187 and the first formula. The second program uses the definition of the logarithmic transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the logarithmic transform, see A274804.

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Some LOG transform pairs are, n >= 1: A006125(n-1) and A033678(n); A006125(n) and A001187(n); A006125(n+1) and A062740(n); A000045(n) and A112005(n); A000045(n+1) and A007553(n); A000040(n) and A007447(n); A000051(n) and (-1)*A263968(n-1); A002416(n) and A062738(n); A000290(n) and A033464(n-1); A029725(n-1) and A116652(n-1); A052332(n) and A002031(n+1); A027641(n)/A027642(n) and (-1)*A060054(n+1)/(A075180(n-1).

Programs

  • Maple
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
  • PARI
    N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017

Formula

a(n) = b(n) - Sum_{k = 1..n-1}((k*binomial(n, k)*b(n-k)*a(k))/n), n >= 1, with b(n) = A000203(n) = sigma(n).
E.g.f. log(1+ Sum_{n >= 1}(b(n)*x^n/n!)), n >= 1, with b(n) = A000203(n) = sigma(n).

A299354 Regular triangle where T(n,k) is the number of labeled connected k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 4, 1, 0, 38, 11, 1, 0, 728, 958, 26, 1, 0, 26704, 1042632, 32596, 57, 1, 0, 1866256, 34352418950, 34359509614, 2096731, 120, 1, 0, 251548592, 72057319189266922, 1180591620442534312262, 72057594021152435, 268434467, 247, 1, 0, 66296291072
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Examples

			Triangle begins:
1
0, 1
0, 4, 1
0, 38, 11, 1
0, 728, 958, 26, 1
0, 26704, 1042632, 32596, 57, 1
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[SeriesCoefficient[Log[Sum[x^n/n!*Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,0,nn}]],{x,0,n}]*n!,{n,nn},{k,n}]

Formula

Column k is the logarithmic transform of the inverse binomial transform of c(d) = 2^binomial(d,k).

A321981 Row n gives the chromatic symmetric function of the n-girder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

1, 2, 0, 6, 0, 0, 16, 0, 2, 0, 0, 40, 12, 2, 0, 0, 0, 0, 96, 16, 44, 6, 0, 0, 0, 0, 0, 0, 0, 224, 136, 66, 52, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 512, 384, 208, 96, 30, 178, 0, 18, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1152, 1024, 584, 522, 138, 588, 102
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-girder has n vertices and looks like:
2-4-6- -n
|\|\|\ ... \|
1-3-5- n-1
Conjecture: All terms are nonnegative (verified up to n = 10). This is a special case of Stanley and Stembridge's poset-chain conjecture.

Examples

			Triangle begins:
    1
    2   0
    6   0   0
   16   0   2   0   0
   40  12   2   0   0   0   0
   96  16  44   6   0   0   0   0   0   0   0
  224 136  66  52   2   4   0   2   0   0   0   0   0   0   0
For example, row 6 gives: X_G6 = 96e(6) + 6e(33) + 16e(42) + 44e(51).
		

Crossrefs

A321994 Number of different chromatic symmetric functions of hypertrees on n vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 59, 165
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
Stanley conjectured that the number of distinct chromatic symmetric functions of trees with n vertices is equal to A000055, i.e., the chromatic symmetric function distinguishes between trees. It has been proven for trees with up to 25 vertices. If it is true in general, does the chromatic symmetric function also distinguish between hypertrees, meaning this sequence would be equal to A035053?

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    density[c_]:=Total[(Length[#]-1&)/@c]-Length[Union@@c];
    hyall[n_]:=Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Or[SubsetQ[#1,#2],Length[Intersection[#1,#2]]>1]&],And[Union@@#==Range[n],Length[csm[#]]==1,density[#]==-1]&];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    Table[Length[Union[chromSF/@If[n==1,{{{1}}},hyall[n]]]],{n,5}]

A327237 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices that, if the isolated vertices are removed, have cut-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 3, 3, 1, 4, 40, 15, 4, 1, 56, 660, 267, 35, 5, 1, 1031, 18756, 11022, 1862, 90, 6, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.

Examples

			Triangle begins:
   1
   1   0
   1   0   1
   1   3   3   1
   4  40  15   4   1
  56 660 267  35   5   1
		

Crossrefs

Row sums are A006125.
Column k = 0 is A327199.
The covering case is A327126.
Row sums without the first column are A287689.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Union@@#,#]==k&]],{n,0,4},{k,0,n}]

Formula

Column-wise binomial transform of A327126.

Extensions

a(21)-a(27) from Jinyuan Wang, Jun 27 2020

A358107 Number of unlabeled trees covering 2n nodes, n+1 of which are leaves.

Original entry on oeis.org

1, 1, 2, 6, 26, 119, 626, 3495, 20688, 127339, 810418, 5293790, 35351571, 240478715, 1662071181, 11646620758, 82601643511, 592110678762, 4284830131865, 31271691087861, 229980550743717, 1703097703162249, 12691879796699486, 95129358337729084, 716801612475691847
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2022

Keywords

Crossrefs

Central column of A055290.
The labeled version is the central column of A055314.
For n leaves we have A359398.
A000272 counts trees, bisection A163395, unlabeled A000055.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts graphs with n vertices and n-1 edges, unordered A001433.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 01 2023

A369195 Irregular triangle read by rows where T(n,k) is the number of labeled connected loop-graphs covering n vertices with k edges.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 0, 3, 10, 12, 6, 1, 0, 0, 0, 16, 79, 162, 179, 116, 45, 10, 1, 0, 0, 0, 0, 125, 847, 2565, 4615, 5540, 4720, 2948, 1360, 455, 105, 15, 1, 0, 0, 0, 0, 0, 1296, 11436, 47100, 121185, 220075, 301818, 325578, 282835, 200115, 115560, 54168, 20343, 5985, 1330, 210, 21, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 19 2024

Keywords

Comments

This sequence excludes the graph consisting of a single isolated vertex without a loop. - Andrew Howroyd, Feb 02 2024

Examples

			Triangle begins:
    1
    0    1
    0    1    2    1
    0    0    3   10   12    6    1
    0    0    0   16   79  162  179  116   45   10    1
Row n = 3 counts the following loop-graphs (loops shown as singletons):
  .  .  {12,13}  {1,12,13}   {1,2,12,13}   {1,2,3,12,13}   {1,2,3,12,13,23}
        {12,23}  {1,12,23}   {1,2,12,23}   {1,2,3,12,23}
        {13,23}  {1,13,23}   {1,2,13,23}   {1,2,3,13,23}
                 {2,12,13}   {1,3,12,13}   {1,2,12,13,23}
                 {2,12,23}   {1,3,12,23}   {1,3,12,13,23}
                 {2,13,23}   {1,3,13,23}   {2,3,12,13,23}
                 {3,12,13}   {1,12,13,23}
                 {3,12,23}   {2,3,12,13}
                 {3,13,23}   {2,3,12,23}
                 {12,13,23}  {2,3,13,23}
                             {2,12,13,23}
                             {3,12,13,23}
		

Crossrefs

Row lengths are A000124.
Diagonal T(n,n-1) is A000272, rooted A000169.
The case without loops is A062734.
Row sums are A062740.
Transpose is A322147.
Column sums are A322151.
Diagonal T(n,n) is A368951, connected case of A368597.
Connected case of A369199, without loops A054548.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}], Length[Union@@#]==n&&Length[csm[#]]<=1&]], {n,0,5},{k,0,Binomial[n+1,2]}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(1 - x + log(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!, O(x*x^n))))) ]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024

Formula

E.g.f.: 1 - x + log(Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - Andrew Howroyd, Feb 02 2024
Previous Showing 101-110 of 156 results. Next