A061132
Number of degree-n even permutations of order dividing 10.
Original entry on oeis.org
1, 1, 1, 1, 4, 40, 190, 610, 1660, 13420, 174700, 1326700, 30818800, 342140800, 2534931400, 16519411000, 143752426000, 4842417082000, 73620307162000, 687934401562000, 17165461784680000, 308493094924720000, 4585953613991980000, 53843602355379220000
Offset: 0
For n=4 the a(4)=4 solutions are (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) (permutations in cyclic notation). - _Luis Manuel Rivera Martínez_, Jun 18 2019
- J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121-
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135.
-
With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^5/5 + x^10/10] + 1/2 Exp[x - x^2/2 + x^5/5 - x^10/10], {x, 0, nn}], x]* Range[0, nn]!] (* Luis Manuel Rivera Martínez, Jun 18 2019 *)
-
my(x='x+O('x^25)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10))) \\ Michel Marcus, Jun 18 2019
A061133
Number of degree-n even permutations of order exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 210, 5040, 37800, 201600, 2044350, 25530120, 213993780, 1692490800, 19767998250, 232823791200, 2235629476080, 23171222430720, 294649445112750, 4300403589581400, 55176842335916700, 660577269463243440
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061135
Number of degree-n even permutations of order exactly 10.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 9072, 90720, 498960, 25945920, 321080760, 2460970512, 14552417880, 115251776640, 4603779180000, 72193873752000, 681167139805152, 16976210865344640, 304992335584165320, 4548189212204243760
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061129
Number of degree-n even permutations of order dividing 4.
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 99856, 475696, 3889216, 31778176, 313696384, 2709911296, 23006784256, 179965340416, 1532217039616, 13081112406784, 147235213351936, 1657791879049216, 20132199908571136, 226466449808367616, 2542933338768769024
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2 + x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 02 2019
-
With[{n=30}, CoefficientList[Series[Exp[x]*Cosh[x^2/2 + x^4/4], {x, 0, n}], x]*Range[0, n]!] (* G. C. Greubel, Jul 02 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2 + x^4/4) )) \\ G. C. Greubel, Jul 02 2019
-
m = 30; T = taylor(exp(x)*cosh(x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
A182222
Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1
Offset: 0
T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3:
+---+ +------+ +------+ +------+
| 1 | | 1 2 | | 1 3 | | 1 4 |
| 2 | | 3 .--+ | 2 .--+ | 2 .--+
| 3 | | 4 | | 4 | | 3 |
| 4 | +---+ +---+ +---+
+---+
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 1;
4, 4, 3, 1;
10, 10, 9, 4, 1;
26, 26, 25, 16, 5, 1;
76, 76, 75, 56, 25, 6, 1;
232, 232, 231, 197, 105, 36, 7, 1;
764, 764, 763, 694, 441, 176, 49, 8, 1;
...
Columns 0-10 give:
A000085,
A000085 (for n>0),
A001189,
A218263,
A218264,
A218265,
A218266,
A218267,
A218268,
A218269,
A218262.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])):
seq(seq(T(n, k), k=0..n), n=0..12);
-
h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]];
Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
A001475
a(n) = a(n-1) + n * a(n-2), where a(1) = 1, a(2) = 2.
Original entry on oeis.org
1, 2, 5, 13, 38, 116, 382, 1310, 4748, 17848, 70076, 284252, 1195240, 5174768, 23103368, 105899656, 498656912, 2404850720, 11879332048, 59976346448, 309442319456, 1628921941312, 8746095288800, 47840221880288, 266492604100288, 1510338372987776
Offset: 1
G.f. = x + 2*x + 5*x^2 + 13*x^3 + 38*x^4 + 116*x^5 + 382*x^6 + 1310*x^7 + ... - _Michael Somos_, Jan 23 2018
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 86 (divided by 2).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 1..795
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- Reinis Cirpons, James East, and James D. Mitchell, Transformation representations of diagram monoids, arXiv:2411.14693 [math.RA], 2024. See pp. 3, 33.
-
a:=[1, 2];; for n in [3..10^2] do a[n] := a[n-1] + n*a[n-2]; od; a; # Muniru A Asiru, Jan 25 2018
-
I:=[1,2]; [n le 2 select I[n] else Self(n-1)+n*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 31 2018
-
a := proc(n) option remember: if n = 1 then 1 elif n = 2 then 2 elif n >= 3 then procname(n-1) +n*procname(n-2) fi; end:
seq(a(n), n = 1..100); # Muniru A Asiru, Jan 25 2018
-
RecurrenceTable[{a[1]==1,a[2]==2,a[n]==a[n-1]+n a[n-2]},a,{n,30}] (* Harvey P. Dale, Apr 21 2012 *)
(* Programs from Michael Somos, Jan 23 2018 *)
a[n_]:= With[{m=n+1}, If[m<2, 0, Sum[(2 k-1)!! Binomial[m, 2 k], {k, 0, m/2}]/2]];
a[n_]:= With[{m=n+1}, If[m<2, 0, HypergeometricU[-m/2, 1/2, -1/2] / (-1/2)^(m/2)/2]];
a[n_]:= With[{m=n+1}, If[m<2, 0, HypergeometricPFQ[{-m/2, (1-m)/2}, {}, 2]/2]];
a[n_]:= If[ n<1, 0, n! SeriesCoefficient[Exp[x+x^2/2]*(1+x)/2, {x, 0, n}]]; (* End *)
Fold[Append[#1, #1[[-1]] + #2 #1[[-2]]] &, {1, 2}, Range[3, 26]] (* Michael De Vlieger, Jan 23 2018 *)
-
{a(n) = if( n<1, 0, n! * polcoeff( exp( x + x^2/2 + x * O(x^n)) * (1 + x) / 2, n))}; /* Michael Somos, Jan 23 2018 */
-
my(N=30,x='x+O('x^N)); Vec(serlaplace((1/2)*( (1+x)*exp(x + x^2/2) - 1))) \\ Joerg Arndt, Sep 04 2023
-
def A001475_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( ((1+x)*exp(x+x^2/2) -1)/2 ).egf_to_ogf().list()
a=A001475_list(40); a[1:] # G. C. Greubel, Sep 03 2023
A074351
Number of elements of S_n having order n.
Original entry on oeis.org
1, 1, 2, 6, 24, 240, 720, 5040, 40320, 514080, 3628800, 80166240, 479001600, 6797831040, 93774320640, 1307674368000, 20922789888000, 523845011289600, 6402373705728000, 153101632051630080, 2471368711740364800, 51182316789956352000, 1124000727777607680000
Offset: 1
K Murray Peebles (m.peebles(AT)sms.ed.ac.uk), Sep 26 2002
a(10) = 514080 because {10}, {5, 2, 2, 1} and {5, 2, 1, 1, 1} are the unique multisets of cycle lengths summing to 10 whose lcm is 10 and 10!/(1!*10^1) + 10!/(1!*2!*1!*5^1*2^2*1^1) + 10!/(1!*1!*3!*5^1*2^1*1^3) = 514080.
-
a[n_] := SeriesCoefficient[ Series[ Sum[ MoebiusMu[n/i]*Exp[Sum[x^j/j, {j, Divisors[i]}]], {i, Divisors[n]}], {x, 0, n}], n]*n!; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, May 21 2012, after Vladeta Jovovic *)
-
a(n)={n!*polcoeff(sumdiv(n, i, moebius(n/i)*exp(sumdiv(i, j, x^j/j) + O(x*x^n))), n)} \\ Andrew Howroyd, Jul 02 2018
A061136
Number of degree-n odd permutations of order dividing 4.
Original entry on oeis.org
0, 0, 1, 3, 12, 40, 120, 336, 2128, 13392, 118800, 850960, 6004416, 38408448, 260321152, 1744135680, 17067141120, 167200393216, 1838196972288, 18345298804992, 181218866222080, 1673804042803200, 16992835499329536
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135,
A001465,
A061136 -
A061140.
A061131
Number of degree-n even permutations of order dividing 8.
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 326656, 2970496, 33826816, 291237376, 2129910784, 13607197696, 324498374656, 4599593353216, 52741679343616, 495632154179584, 7127212838772736, 94268828128854016, 2098358019107700736, 34030412427789500416
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).
- Alois P. Heinz, Table of n, a(n) for n = 0..502
- Lev Glebsky, Melany Licón, Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
- T. Koda, M. Sato, Y. Tskegahara, 2-adic properties for the numbers of involutions in the alternating groups, J. Algebra Appl. 14 (2015), no. 4, 1550052 (21 pages).
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135.
A061140
Number of degree-n odd permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 5040, 45360, 226800, 831600, 9979200, 103783680, 2058376320, 23870246400, 265686220800, 2477893017600, 47031546481920, 656384611034880, 11972743148620800, 165640695384729600, 1969108505560627200
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
Comments