cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 3325 results. Next

A076191 First differences of A001222.

Original entry on oeis.org

1, 0, 1, -1, 1, -1, 2, -1, 0, -1, 2, -2, 1, 0, 2, -3, 2, -2, 2, -1, 0, -1, 3, -2, 0, 1, 0, -2, 2, -2, 4, -3, 0, 0, 2, -3, 1, 0, 2, -3, 2, -2, 2, 0, -1, -1, 4, -3, 1, -1, 1, -2, 3, -2, 2, -2, 0, -1, 3, -3, 1, 1, 3, -4, 1, -2, 2, -1, 1, -2, 4, -4, 1, 1, 0, -1, 1, -2, 4, -1, -2, -1, 3, -2, 0, 0, 2, -3, 3, -2, 1, -1, 0, 0, 4, -5, 2, 0, 1, -3
Offset: 1

Views

Author

Joseph L. Pe, Nov 03 2002

Keywords

Comments

a(A045920(n)) = 0. - Reinhard Zumkeller, Mar 19 2012

Crossrefs

Programs

  • Haskell
    a076191 n = a076191_list !! (n-1)
    a076191_list = zipWith (-) (tail a001222_list) a001222_list
    -- Reinhard Zumkeller, Mar 20 2012
    
  • Mathematica
    Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; Flatten[Append[{1}, Table[Omega[n + 1] - Omega[n], {n, 2, 100}]]]
  • PARI
    a(n) = bigomega(n + 1) - bigomega(n); \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = Omega(n+1)-Omega(n), where Omega(n) (A001222) denotes the number of prime factors of n, counting multiplicity.
G.f.: ((1 - x)/x)*Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Mar 15 2017

Extensions

Name changed by Arkadiusz Wesolowski, Jul 27 2012

A102467 Positive integers k such that d(k) <> Omega(k) + omega(k), where d = A000005, Omega = A001222 and omega = A001221.

Original entry on oeis.org

1, 12, 18, 20, 24, 28, 30, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2005

Keywords

Comments

These are the numbers which are neither prime powers (>1) nor semiprimes. - M. F. Hasler, Jan 31 2008
For n > 1, positive integers k with a composite divisor, d < k, that is relatively prime to k/d. For example 12 is in the sequence since 4 (composite) is coprime to 12/4 = 3. - Wesley Ivan Hurt, Apr 25 2020

Examples

			10 is not in the sequence since d(10) = 4 is equal to Omega(10) + omega(10) = 2 + 2 = 4.
12 is in the sequence since d(12) = 6 is not equal to Omega(12) + omega(12) = 3 + 2 = 5. - _Wesley Ivan Hurt_, Apr 25 2020
		

Crossrefs

Cf. A000005 (tau), A001221 (omega), A001222 (Omega).

Programs

  • Haskell
    a102467 n = a102467_list !! (n-1)
    a102467_list = [x | x <- [1..], a000005 x /= a001221 x + a001222 x]
    -- Reinhard Zumkeller, Dec 14 2012
    
  • Maple
    with(numtheory):
    q:= n-> is(tau(n)<>bigomega(n)+nops(factorset(n))):
    select(q, [$1..200])[];  # Alois P. Heinz, Jul 14 2023
  • Mathematica
    Select[Range[200], DivisorSigma[0, #] != PrimeOmega[#] + PrimeNu[#]&] (* Jean-François Alcover, Jun 22 2018 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f!=1 && f!=[1,1]~ \\ Charles R Greathouse IV, Oct 19 2015
  • Sage
    def is_A102467(n) :
        return sloane.A001221(n) != 1 and sloane.A001222(n) != 2
    def A102467_list(n) :
        return [k for k in (1..n) if is_A102467(k)]
    A102467_list(156)  # Peter Luschny, Feb 07 2012
    

Formula

Complement of A102466; A000005(a(n)) <> A001221(a(n)) + A001222(a(n)).
For n > 1, A086971(a(n)) > 1. - Reinhard Zumkeller, Dec 14 2012

Extensions

Name changed by Wesley Ivan Hurt, Apr 25 2020

A144494 a(n) = 0 if n is prime, otherwise A001222(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 3, 2, 2, 0, 3, 0, 2, 2, 4, 0, 3, 0, 3, 2, 2, 0, 4, 2, 2, 3, 3, 0, 3, 0, 5, 2, 2, 2, 4, 0, 2, 2, 4, 0, 3, 0, 3, 3, 2, 0, 5, 2, 3, 2, 3, 0, 4, 2, 4, 2, 2, 0, 4, 0, 2, 3, 6, 2, 3, 0, 3, 2, 3, 0, 5, 0, 2, 3, 3, 2, 3, 0, 5, 4, 2, 0, 4, 2, 2, 2, 4, 0, 4, 2, 3, 2, 2, 2, 6, 0, 3, 3, 4, 0, 3, 0, 4, 3
Offset: 1

Views

Author

N. J. A. Sloane, Dec 12 2008

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); f:=n->if isprime(n) then 0 else bigomega(n); fi;
  • Mathematica
    Table[If[PrimeQ[n], 0, PrimeOmega[n]], {n,1,100}] (* G. C. Greubel, Apr 25 2017 *)

A328964 Smallest k such that omega(k) * bigomega(k) = n, where omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 2, 4, 8, 6, 32, 12, 128, 24, 30, 48, 2048, 60, 8192, 192, 120, 210, 131072, 240, 524288, 420, 480, 3072, 8388608, 840, 2310, 12288, 1920, 1680, 536870912, 3840, 2147483648, 3360, 7680, 196608, 9240, 6720, 137438953472, 786432, 30720, 13440, 2199023255552, 60060, 8796093022208
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Examples

			The sequence of terms together with their prime signatures begins:
     1: ()
     2: (1)
     4: (2)
     8: (3)
     6: (1,1)
    32: (5)
    12: (2,1)
   128: (7)
    24: (3,1)
    30: (1,1,1)
    48: (4,1)
  2048: (11)
    60: (2,1,1)
  8192: (13)
   192: (6,1)
   120: (3,1,1)
   210: (1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    dat=Table[PrimeOmega[n]*PrimeNu[n],{n,1000}];
    Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}]
  • PARI
    a(n)={if(n<1, 1, my(m=oo); fordiv(n, d, if(d<=n/d, m=min(m, 2^(n/d-d)*vecprod(primes(d))))); m)} \\ Andrew Howroyd, Nov 04 2019

Formula

a(p) = 2^p, for p prime. - Daniel Suteu, Nov 03 2019
a(n) = min_{d|n, d<=n/d} 2^(n/d-d)*A002110(d) for n > 0. - Andrew Howroyd, Nov 04 2019

Extensions

More terms from Daniel Suteu, Nov 03 2019

A333484 Sort all positive integers, first by sum of prime indices (A056239), then by decreasing number of prime indices (A001222).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 14, 15, 11, 64, 48, 36, 40, 27, 28, 30, 21, 22, 25, 13, 128, 96, 72, 80, 54, 56, 60, 42, 44, 45, 50, 26, 33, 35, 17, 256, 192, 144, 160, 108, 112, 120, 81, 84, 88, 90, 100, 52, 63, 66, 70, 75, 34, 39, 49, 55, 19
Offset: 0

Views

Author

Gus Wiseman, May 10 2020

Keywords

Comments

A refinement of A215366.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  14  15  11
   64  48  36  40  27  28  30  21  22  25  13
  128  96  72  80  54  56  60  42  44  45  50  26  33  35  17
		

Crossrefs

Row lengths are A000041.
Ignoring length gives A215366 (graded Heinz numbers).
Sorting by increasing length gives A333483.
Number of prime indices is A001222.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in (sum/length/colex) order are A036037.
Sum of prime indices is A056239.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Lexicographically ordered partitions are A193073.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,n,0,-1}]

A360617 Half the number of prime factors of n (counted with multiplicity, A001222), rounded up.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2023

Keywords

Examples

			The prime indices of 378 are {1,2,2,2,4}, so a(378) = ceiling(5/2) = 3.
		

Crossrefs

Positions of 0's and 1's are 1 and A037143.
Positions of first appearances are A081294.
Rounding down instead of up gives A360616.
A112798 lists prime indices, length A001222, sum A056239, median* A360005.
A360673 counts multisets by right sum (exclusive), inclusive A360671.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.

Programs

  • Mathematica
    Table[Ceiling[PrimeOmega[n]/2],{n,100}]

A371170 Positive integers with at most as many prime factors (A001222) as distinct divisors of prime indices (A370820).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 105 are {2,3,4}, and there are 3 prime factors (3,5,7) and 4 distinct divisors of prime indices (1,2,3,4), so 105 is in the sequence.
The terms together with their prime indices begin:
     1: {}       22: {1,5}      42: {1,2,4}    63: {2,2,4}
     2: {1}      23: {9}        43: {14}       65: {3,6}
     3: {2}      25: {3,3}      45: {2,2,3}    66: {1,2,5}
     5: {3}      26: {1,6}      46: {1,9}      67: {19}
     6: {1,2}    28: {1,1,4}    47: {15}       69: {2,9}
     7: {4}      29: {10}       49: {4,4}      70: {1,3,4}
     9: {2,2}    30: {1,2,3}    51: {2,7}      71: {20}
    10: {1,3}    31: {11}       52: {1,1,6}    73: {21}
    11: {5}      33: {2,5}      53: {16}       74: {1,12}
    13: {6}      34: {1,7}      55: {3,5}      75: {2,3,3}
    14: {1,4}    35: {3,4}      57: {2,8}      76: {1,1,8}
    15: {2,3}    37: {12}       58: {1,10}     77: {4,5}
    17: {7}      38: {1,8}      59: {17}       78: {1,2,6}
    19: {8}      39: {2,6}      61: {18}       79: {22}
    21: {2,4}    41: {13}       62: {1,11}     82: {1,13}
		

Crossrefs

The complement is A370348, counted by A371171.
The case of equality is A370802, counted by A371130, strict A371128.
The RHS is A370820, for prime factors instead of divisors A303975.
The strict version is A371168 counted by A371173.
The opposite version is A371169.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]<=Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

A374246 Number of prime factors of n counted with multiplicity (A001222) minus the greatest number of runs possible in a permutation of them (A373957).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 07 2024

Keywords

Comments

a(n) = 0 iff n has separable prime factors (A335433). A multiset is separable iff it has a permutation that is an anti-run (meaning there are no adjacent equal parts).

Examples

			The runs of the 4 permutations of the prime factors of 24 are:
  ((2,2,2),(3))
  ((2,2),(3),(2))
  ((2),(3),(2,2))
  ((3),(2,2,2))
The longest have length 3, so a(24) = 4 - 3 = 1.
		

Crossrefs

Using the minimum instead of maximum number of runs gives A046660.
Positions of first appearances are A151821 (powers of 2 except 2 itself).
Positions of positive terms are A335448, complement A335433.
This is an opposite version of A373957.
The sister-sequence A374247 uses A001221 instead of A001222.
This is the number of zeros at the end of row n of A374252.
A001221 counts distinct prime factors, A001222 with multiplicity.
A008480 counts permutations of prime factors.
A027746 lists prime factors, row-sums A001414.
A027748 is run-compression of prime factors, row-sums A008472.
A304038 is run-compression of prime indices, row-sums A066328.
A374250 maximizes sum of run-compression, for indices A373956.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{}, Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[PrimeOmega[n]-Max@@Table[Length[Split[y]], {y,Permutations[prifacs[n]]}],{n,100}]

Formula

a(n) = A001222(n) - A373957(n).

A068936 Numbers having the sum of distinct prime factors not greater than the sum of exponents in prime factorization, A008472(k) <= A001222(k).

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 48, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 320, 324, 384, 432, 486, 512, 576, 640, 648, 729, 768, 800, 864, 972, 1024, 1152, 1280, 1296, 1458, 1536, 1600, 1728, 1792, 1944, 2000, 2048, 2187, 2304, 2560, 2592, 2916
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Comments

The product of any two terms is also a term. - Amiram Eldar, May 14 2025

Examples

			a(5) = 27 = 3^3, 3 = 3.
a(10) = 81 = 3^4, 3 < 4.
a(100) = 16000 = 2^7 * 5^3,  2+5 < 7+3.
a(1000) = 10321920 = 2^15 * 3^2 * 5 * 7, 2+3+5+7 < 15+2+1+1.
		

Crossrefs

Programs

  • Haskell
    a068936 n = a068936_list !! (n-1)
    a068936_list = [x | x <- [1..], a008472 x <= a001222 x]
    -- Reinhard Zumkeller, Nov 10 2013
    
  • Mathematica
    fQ[n_] := Block[{f = FactorInteger@n}, Plus @@ Last /@ f >= Plus @@ First /@ f]; Select[ Range@3000, fQ@ # &] (* Robert G. Wilson v, Jan 16 2006 *)
    Select[Range@ 3000, First@ Differences@ Map[Total, Transpose@ FactorInteger@ #] >= 0 &] (* Michael De Vlieger, Dec 08 2016 *)
  • PARI
    isok(k) = {my(f = factor(k)); vecsum(f[,1]) <= bigomega(f);} \\ Amiram Eldar, May 14 2025

Extensions

More terms from Robert G. Wilson v, Jan 16 2006

A124508 a(n) = 2^BigO(n) * 3^omega(n), where BigO = A001222 and omega = A001221, the numbers of prime factors of n with and without repetitions.

Original entry on oeis.org

1, 6, 6, 12, 6, 36, 6, 24, 12, 36, 6, 72, 6, 36, 36, 48, 6, 72, 6, 72, 36, 36, 6, 144, 12, 36, 24, 72, 6, 216, 6, 96, 36, 36, 36, 144, 6, 36, 36, 144, 6, 216, 6, 72, 72, 36, 6, 288, 12, 72, 36, 72, 6, 144, 36, 144, 36, 36, 6, 432, 6, 36, 72, 192, 36, 216, 6, 72, 36, 216, 6, 288, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^PrimeOmega[n] 3^PrimeNu[n],{n,80}] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    a(n) = my(f = factor(n)); 2^bigomega(f) * 3^omega(f); \\ Amiram Eldar, Jul 11 2023

Formula

Multiplicative with p^e -> 3*2^e, p prime and e>0.
a(n) = A061142(n)*A074816(n) = A000079(A001222(n))*A000244(A001221(n)).
A124509 gives the range: A124509(n) = a(A124510(n)) and a(m) <> a(A124510(n)) for m < A124510(n).
For primes p, q with p <> q: a(p) = 6; a(p*q) = 36; a(p^k) = 3*2^k, k>0.
For squarefree numbers m: a(m) = 6^omega(m).
A001222(a(n)) = A001222(n)+1; A001221(a(n)) = 2 for n > 1.
A124511(n) = a(a(n)); A124512(n) = a(a(a(n))).
Previous Showing 41-50 of 3325 results. Next