cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A305077 Partial sums of absolute values of A076191.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 8, 9, 11, 13, 14, 14, 16, 19, 21, 23, 25, 26, 26, 27, 30, 32, 32, 33, 33, 35, 37, 39, 43, 46, 46, 46, 48, 51, 52, 52, 54, 57, 59, 61, 63, 63, 64, 65, 69, 72, 73, 74, 75, 77, 80, 82, 84, 86, 86, 87, 90, 93, 94, 95, 98, 102, 103, 105, 107, 108, 109, 111, 115, 119, 120, 121
Offset: 1

Views

Author

Robert Israel, May 24 2018

Keywords

Crossrefs

Programs

  • Maple
    L:= map(numtheory:-bigomega, [$1..200]):
    ListTools:-PartialSums(map(abs, L[2..-1]-L[1..-2]));

Formula

a(n) = Sum_{k=1..n} |A001222(n+1) - A001222(n)|.

A045920 Numbers m such that the factorizations of m..m+1 have the same number of primes (including multiplicities).

Original entry on oeis.org

2, 9, 14, 21, 25, 27, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 121, 122, 124, 133, 135, 141, 142, 145, 147, 153, 158, 164, 170, 171, 174, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 245, 253, 284, 285, 296, 298, 301, 302, 326, 332, 334, 350, 356, 361
Offset: 1

Views

Author

Keywords

Comments

A115186 is a subsequence: A001222(A115186(n)) = A001222(A115186(n)+1) = n. - Reinhard Zumkeller, Jan 16 2006
Indices k such that A076191(k) = 0. - Ray Chandler, Dec 10 2008
A045939 is a subsequence. - Zak Seidov, Jul 02 2020
This sequence is infinite (Heath-Brown, 1984). - Amiram Eldar, Jul 11 2020

References

  • C. Clawson, Mathematical mysteries, Plenum Press 1996, p. 250.

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): this sequence (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • Haskell
    import Data.List (elemIndices)
    a045920 n = a045920_list !! (n-1)
    a045920_list = map (+ 1) $ elemIndices 0 a076191_list
    -- Reinhard Zumkeller, Mar 23 2012, Oct 11 2011
    
  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};Do[If[f[n]==f[n+1],AppendTo[lst,n]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    Transpose[Transpose[Select[Partition[Table[{n,PrimeOmega[n]},{n,400}], 2,1], #[[1,2]]==#[[2,2]]&]][[1]]][[1]] (* Harvey P. Dale, Feb 21 2012 *)
    Position[Differences[PrimeOmega[Range[400]]], 0] // Flatten (* Zak Seidov, Oct 30 2012 *)
  • PARI
    is(n)=bigomega(n)==bigomega(n+1) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = A278291(n) - 1. - Zak Seidov, Nov 17 2018

Extensions

More terms from David W. Wilson

A023991 Sum of exponents of primes in multinomial coefficient M(3n; n+1,n,n-1).

Original entry on oeis.org

1, 4, 6, 8, 8, 12, 12, 13, 13, 15, 17, 20, 19, 22, 21, 22, 21, 24, 25, 26, 25, 31, 30, 32, 30, 31, 33, 33, 32, 36, 34, 36, 34, 36, 36, 37, 36, 40, 40, 42, 40, 45, 48, 49, 49, 51, 50, 52, 49, 50, 50, 53, 50, 56, 53, 53, 53, 55, 58, 60, 59, 62, 60, 60, 55, 58, 59, 61, 60, 65, 62, 65, 63, 66, 69, 68
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[Multinomial[n+1, n, n-1]]; Array[a, 100] (* Amiram Eldar, Jun 11 2025 *)
  • PARI
    a(n) = bigomega((3*n)! / ((n-1)!*n!*(n+1)!)); \\ Amiram Eldar, Jun 11 2025

Formula

From Amiram Eldar, Jun 11 2025: (Start)
a(n) = A001222(A248707(n)).
a(n) = A022559(3*n) - A022559(n-1) - A022559(n) - A022559(n+1) = A022559(3*n) - 3*A022559(n) - A001222(n+1) + A001222(n) = A023978(n) - A076191(n). (End)

A023835 Sum of exponents in prime-power factorization of C(4n,2n-1).

Original entry on oeis.org

2, 4, 6, 7, 7, 9, 11, 12, 13, 13, 13, 15, 14, 16, 17, 18, 16, 18, 18, 20, 22, 22, 23, 25, 24, 24, 25, 24, 24, 28, 27, 29, 27, 30, 30, 32, 31, 31, 34, 32, 31, 33, 34, 37, 36, 35, 36, 40, 37, 37, 38, 39, 39, 42, 41, 42, 42, 42, 42, 43, 44, 46, 47, 48, 45, 46, 44, 45, 48, 49, 47, 50, 47, 49, 53, 52, 51
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[Binomial[4 n, 2 n - 1]], {n, 78}] (* Ivan Neretin, Nov 08 2017 *)
  • PARI
    a(n) = bigomega(binomial(4*n,2*n-1)); \\ Amiram Eldar, Jun 13 2025

Formula

a(n) = A023832(n) - A001222(2*n+1) + A001222(2*n) = A023832(n) - A076191(2*n). - Amiram Eldar, Jun 13 2025

Extensions

a(74)-a(77) corrected by Ivan Neretin, Nov 08 2017

A023817 Sum of exponents in prime-power factorization of C(2n,n-1).

Original entry on oeis.org

0, 2, 2, 4, 4, 6, 4, 7, 6, 7, 6, 9, 8, 11, 9, 12, 9, 13, 10, 13, 12, 13, 12, 15, 14, 14, 14, 16, 14, 17, 12, 18, 16, 16, 15, 18, 15, 18, 17, 20, 19, 22, 20, 22, 22, 23, 20, 25, 21, 24, 22, 24, 22, 25, 21, 24, 22, 24, 23, 28, 26, 27, 26, 29, 25, 27, 25, 30, 28, 30, 26, 32, 29, 31, 31, 31, 31, 34, 29, 32
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},Total[FactorInteger[#][[All,2]]]&/@Table[Binomial[2n,n-1], {n,2,80}]] (* Harvey P. Dale, Sep 14 2016 *)
    Table[PrimeOmega[Binomial[2 n, n + 1]], {n, 1, 200}] (* Clark Kimberling, May 04 2025 *)
  • PARI
    a(n) = bigomega(binomial(2*n, n-1)); \\ Amiram Eldar, Jun 11 2025

Formula

From Amiram Eldar, Jun 11 2025: (Start)
a(n) = A001222(A001791(n)).
a(n) = A023816(n) - A076191(n). (End)

A079057 a(n) = Sum_{k=1..n} bigomega(tau(k)).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 20, 21, 22, 24, 25, 27, 29, 31, 32, 35, 36, 38, 40, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 60, 62, 65, 66, 69, 70, 72, 74, 76, 77, 79, 80, 82, 84, 86, 87, 90, 92, 95, 97, 99, 100, 103, 104, 106, 108, 109, 111, 114, 115, 117, 119
Offset: 1

Views

Author

Benoit Cloitre, Feb 02 2003

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.

Crossrefs

Partial sums of A058061.

Programs

  • Mathematica
    Accumulate[PrimeOmega[DivisorSigma[0,Range[70]]]] (* Harvey P. Dale, Dec 05 2013 *)
  • PARI
    a(n)=sum(i=1,n,bigomega(numdiv(i)))

Formula

a(n) = n*log(log(n)) + O(n).
a(n) = b * n * log(log(n)) + Sum_{k=0..floor(sqrt(n))} b_k * n/log(n)^k + O(n * exp(-c*sqrt(log(n)))), where b, b_k and c are constants (Heppner, 1974). b = 1 and b_0 = B + C, where B is Mertens's constant (A077761), C = Sum_{k>=2} A076191(k)*P(k) = 0.12861146810484151346..., and P(s) is the prime zeta function. - Amiram Eldar, Jan 15 2024 and Feb 11 2024

A285787 Least number k such that the absolute value of the difference between the number of prime factors, with multiplicity, of k and k-1 is equal to n.

Original entry on oeis.org

3, 2, 8, 17, 32, 97, 128, 257, 769, 2048, 4097, 6144, 8192, 40961, 73728, 65537, 131072, 524289, 524288, 3145728, 6291456, 8388608, 18874368, 50331648, 113246209, 167772161, 268435457, 805306368, 1610612737, 2147483649, 2147483648, 17179869184, 21474836480
Offset: 0

Views

Author

Paolo P. Lava, Apr 26 2017

Keywords

Comments

a(n) <= A051900(n), with equality for n=3,5,7,8,13,15. - Robert Israel, Apr 26 2017

Examples

			a(9) = 2048 because 2047 = 23 * 89, 2048 = 2^11 and 11 - 2 = 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,v; v:=array(0..100);
    for k from 0 to 100 do v[k]:=0; od; a:=0;
    for k from 2 to q do b:=bigomega(k); if v[abs(b-a)]=0 then v[abs(b-a)]:=k; fi; a:=b; od; k:=0;
    while v[k]>0 do print(v[k]); k:=k+1; od; print(); end: P(10^6);
  • Mathematica
    s = PrimeOmega@ Range[10^6]; 1 + First /@ Values@ KeySort@ PositionIndex@ Flatten@ Map[Abs@ Differences@ # &, Partition[s, 2, 1]] (* Michael De Vlieger, Apr 26 2017, Version 10 *)

Formula

Least solutions of the equation abs(A001222(k) - A001222(k-1)) = n.

Extensions

a(24)-a(32) from Giovanni Resta, Apr 26 2017

A248211 First differences of omega(n), the number of distinct prime factors function (A001221).

Original entry on oeis.org

1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 0, 1, -1, 1, 0, 0, -1, 1, -1, 1, -1, 1, -1, 2, -2, 0, 1, 0, 0, 0, -1, 1, 0, 0, -1, 2, -2, 1, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 2, -2, 1, 0, -1, 1, 1, -2, 1, 0, 1, -2, 1, -1, 1, 0, 0, 0, 1, -2, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 04 2014

Keywords

Comments

First instance of abs(a(n)) > 2 is for n = 210. - Alonso del Arte, Oct 05 2014

Crossrefs

Cf. A001221 (omega).
Cf. A053222: first differences of sigma(n) = A000203.
Cf. A076191: first differences of bigomega(n) = A001222.
Cf. A127440: first differences of mobius(n) = A008683.

Programs

  • Maple
    with(numtheory): A248211:=n->nops(factorset(n+1))-nops(factorset(n)): seq(A248211(n), n=1..100);
  • Mathematica
    Table[PrimeNu[n + 1] - PrimeNu[n], {n, 100}] (* Hurt *)
    Differences[PrimeNu[Range[100]]] (* Alonso del Arte, Oct 04 2014 *)
  • PARI
    a(n) = omega(n+1) - omega(n); \\ Michel Marcus, Dec 29 2022

Formula

a(n) = omega(n+1) - omega(n) = A001221(n+1) - A001221(n).
G.f.: (1 - x)*Sum_{k>=1} x^(prime(k)-1)/(1 - x^prime(k)). - Ilya Gutkovskiy, Mar 15 2017
Showing 1-8 of 8 results.